Synthesis 2020; 52(08): 1266-1272
DOI: 10.1055/s-0039-1690802
paper
© Georg Thieme Verlag Stuttgart · New York

Realizing the Trifunctional Potential of Alkyl 4-Chloro-2-diazo-3-oxobutanoates: Convenient Assembly of 6,7-Dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]thiazine Core

a  Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   eMail: m.krasavin@spbu.ru
,
Olesya Khoroshilova
a  Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   eMail: m.krasavin@spbu.ru
,
Grigory Kantin
a  Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   eMail: m.krasavin@spbu.ru
,
a  Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   eMail: m.krasavin@spbu.ru
b  Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russian Federation
› Institutsangaben
This research was supported by the Russian Science Foundation (project grant 19-75-30008). The authors declare no competing financial interest.
Weitere Informationen

Publikationsverlauf

Received: 16. Dezember 2019

Accepted after revision: 03. Januar 2020

Publikationsdatum:
27. Januar 2020 (online)


Abstract

The first example of exploiting the trifunctional character of alkyl 4-chloro-2-diazo-3-oxobutanoates in the reactions with vicinal N,S-bis-nucleophiles leading to the formation of bicyclic 6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]thiazines is presented. The key to the successful realization of the atom-economical synthetic strategy is the initial S N 2 event, which facilitates the subsequent domino 1,2,3-triazole formation via the Wolff reaction. Equally important is the choice of sodium acetate as the base: acetic acid formed in the course of the initial nucleophilic substitution acts as an efficient catalyst for the Wolff reaction, which suppresses the competing, unwanted fragmentation path (observed when other bases are used).

Supporting Information

 
  • References

  • 1 Ganem B. Acc. Chem. Res. 2009; 42: 463
  • 2 Piers E. Pure Appl. Chem. 1988; 60: 107
  • 3 Posner GH. Chem. Rev. 1986; 86: 831
  • 4 Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
  • 5 Dar’in D, Kantin G, Krasavin M. Chem. Commun. 2019; 55: 5239
  • 6 Padwa A, Sa MM, Weingarten MD. Tetrahedron 1997; 53: 2371
  • 7 Liu PN, Li XG, Sun M, Liu K, Jin Q. Chem. Commun. 2015; 51: 2380
  • 8 Shi L, Yu K, Wang B. Chem. Commun. 2015; 51: 17277
  • 9 Li XG, Sun M, Jin Q, Liu K, Liu PN. J. Org. Chem. 2016; 81: 3901
  • 10 Sun P, Gao S, Yang C, Guo S, Lin A, Yao H. Org. Lett. 2016; 18: 6464
  • 11 Hou W, Xiong H, Bai R, Xiao Z, Su L, Ruan BH, Xu H. Tetrahedron 2019; 75: 4005
  • 12 Lade DM, Aher YN, Pawar AB. J. Org. Chem. 2019; 84: 9188
  • 13 Liu Y, Hu Y, Lv G, Nie R, Peng Y, Zhang C, Lv S, Hai L, Wang H, Wu Y. ACS Sustainable Chem. Eng. 2019; 7: 13425
  • 14 Shi B, Blake AJ, Lewis W, Campbell IB, Judkins BD, Moody CJ. J. Org. Chem. 2010; 75: 152
  • 15 Wang Y, Zhu S. Tetrahedron 2001; 57: 3383
  • 16 Smetanin IA, Novikov MS, Rostovskii NV, Khlebnikov AF, Starova GL, Yufit DS. Tetrahedron 2015; 71: 4616
  • 17 Bertelsen S, Nielsen M, Bachmann S, Jørgensen KA. Synthesis 2005; 2234
  • 18 Ila H, Acharya A, Peruncheralathan S. Chapter 4 In Domino Reactions: Concepts for Efficient Organic Synthesis, 1st ed. Tietze LF. Wiley-VCH; Weinheim: 2014. Chap. 4
  • 19 Safrygin A, Dar’in D, Kantin G, Krasavin M. Eur. J. Org. Chem. 2019; 4721
  • 20 Costin TA, Dutra LG, Bortoluzzi AG, Sa MM. Tetrahedron 2017; 73: 4549
    • 21a Dabak K, Akar A. Heterocycl. Commun. 2002; 8: 61
    • 21b Dabak K, Akar A. Heterocycl. Commun. 2002; 8: 385
  • 22 Kawai R, Yamanouchi M, Saku O, Nakagawa H, Nakoji M, Kubo K. PCT Int. Appl WO 2013180128, 2013 ; Chem. Abstr. 2013, 160, 53747
  • 23 Foley MA. C, Kuntz KW, Mills JE. J, Mitchell LH, Munchhof MJ, Harvey DM. PCT Int. Appl WO2016040505, 2016 ; Chem. Abstr. 2016, 164, 412324.
  • 24 Bischoff A, Subramanya H, Sundaresan K, Sammeta SR, Vaka AK. US Pat. Appl 20100160323, 2010 ; Chem. Abstr. 2010, 153, 116278
  • 25 Dabak K, Sezer O, Akar A, Anac O. Eur. J. Med. Chem. 2003; 38: 215
  • 26 Aissaoui H, Guerry P, Lehembre F, Pothier J, Pouzol L, Richard-Bildstein S, Yuan S. PCT Int. Appl WO 2018019929, 2018 ; Chem. Abstr. 2018, 168, 232762
  • 27 CCDC 1923038 (7), 1923037 (12), 1923039 (13), and 1923040 (19) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge­ Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 28 Bertani B, Cremonesi S, Garzya V, Micheli F, Rupcic R, Sabbatini FM. PCT Int. Appl WO2011151361, 2011 ; Chem. Abstr. 2011, 156, 35094
  • 29 Search performed on November 4, 2019.
  • 30 Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G, Alt J, Rais R, Rojas C, Gao P, Xiang Y, Dang CV, Slusher BS, Tsukamoto T. J. Med. Chem. 2012; 55: 10551
  • 31 Muller U. Patent PCT Int. Appl.WO9817631, 1998 ; Chem. Abstr. 1998, 128, 321451.
  • 32 Turk SD, Louthan RP, Cobb RL, Bresson CR. J. Org. Chem. 1962; 27: 2846
  • 33 Corbin JL, Miller KF, Pariyadath N, Heinecke J, Bruce AE, Wherland S, Stiefel EI. Inorg. Chem. 1984; 23: 3404
  • 34 Knak S, Pfeiffer W.-D, Dollinger H, Langer P. J. Heterocycl. Chem. 2015; 52: 450