Synthesis 2020; 52(07): 1035-1046
DOI: 10.1055/s-0039-1690799
© Georg Thieme Verlag Stuttgart · New York

One-Pot Access to 4-Aryl-2-arylacetoxynaphthalenes via Benz­annulation of Oxygenated Arylacetic Acids and Alkyl Aryl Ketones

a  Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email:
b  Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
Shin-Mei Chen
a  Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email:
Yu-Ting Hsiao
a  Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email:
› Author Affiliations
The authors would like to thank the Ministry of Science and Technology of the Republic of China for its financial support (MOST 106-2628-M-037-001-MY3).
Further Information

Publication History

Received: 25 November 2019

Accepted after revision: 23 December 2019

Publication Date:
27 January 2020 (online)


Trifluoroacetic anhydride mediated one-pot intermolecular formal (4+2) benzannulation of oxygenated arylacetic acids with alkyl aryl ketones provides 4-aryl-2-arylacetoxynaphthalenes in moderate to good yields in the presence of H3PO4 in an open-vessel in a straightforward procedure. A plausible mechanism is proposed and discussed. This protocol provides a highly effective ring-closure via two carbon–carbon (C–C) and one carbon–oxygen (C–O) bond-formation events.

Supporting Information

  • References

    • For reviews on the synthesis of naphthalenes, see:
    • 1a de Koning CB, Rousseau AL, van Otterlo WA. L. Tetrahedron 2003; 59: 7
    • 1b For reviews on the benzannulation of naphthalenes, see: Kotha S, Somnath-Halder SM. Tetrahedron 2008; 64: 10775

      For bioactive molecules with the core naphthalene skeleton, see:
    • 2a Ukita T, Nakamura Y, Kubo A, Yamomoto Y, Takahashi M, Kotera J, Ikeo T. J. Med. Chem. 1999; 42: 1293
    • 2b Yeo H, Li Y, Fu L, Zhu J.-L, Gullen EA, Dutschman GE, Lee Y, Chung R, Huang E.-S, Austin DJ, Cheng Y.-C. J. Med. Chem. 2005; 48: 534
    • 2c Shen W, Zou X, Chen M, Liu P, Shen Y, Huang S, Guo H, Zhang L. Eur. J. Pharmacol. 2011; 667: 330
    • 2d Aszno J, Chiba K, Tada M, Yoshii T. Phytochemistry 1996; 42: 713

      For natural products with the core naphthalene skeleton, see:
    • 3a Ward RS. Nat. Prod. Rep. 1999; 16: 75
    • 3b Apers S, Vlietinck A, Pieters L. Phytochem. Rev. 2003; 2: 201
    • 3c Abdissa N, Pan F, Gruhonjic A, Grafenstein J, Fitzpatrick PA, Landberg G, Rissanen K, Yenesew A, Erdelyi M. J. Nat. Prod. 2016; 79: 2181

      For synthetic blocks or ligands with core naphthalene skeleton, see:
    • 4a Ji N, Rosen BM, Myers AG. Org. Lett. 2004; 6: 4551
    • 4b Mulrooney CA, Li X, Divirgilio ES, Kozlowski MC. J. Am. Chem. Soc. 2003; 125: 6856

      For functionalized materials with the core naphthalene skeleton, see:
    • 5a Lin K.-T, Kuo H.-M, Sheu H.-S, Lai C.-K. Tetrahedron 2013; 69: 9045
    • 5b Tanaka M, Elias B, Barton JK. J. Org. Chem. 2010; 75: 2423
    • 5c Thalacker C, Röger C, Würthner F. J. Org. Chem. 2006; 71: 8098
    • 5d Rodriguez JG, Tejedor JL. J. Org. Chem. 2002; 67: 7631
    • 5e Chowdhury S, Georghiou PE. J. Org. Chem. 2002; 67: 6808
    • 5f Röger C, Würthner F. J. Org. Chem. 2007; 72: 8070

      For transition-metal-catalyzed tandem benzannulation, see:
    • 6a Tsukamoto H, Kondo Y. Org. Lett. 2007; 9: 4227
    • 6b Dai Y, Feng X, Liu H, Jiang H, Bao M. J. Org. Chem. 2011; 76: 10068
    • 6c Aiken S, Armitage B, Gabbutt CD, Heron BK. Tetrahedron Lett. 2015; 4840
    • 6d Collomb D, Chantegrel B, Deshayes C. Tetrahedron 1996; 52: 10455
    • 6e Jin T, Yamamoto Y. Org. Lett. 2007; 9: 5259

      For electrophilic or nucleophilic cyclocondensation, see:
    • 7a Zhang X, Sarkar S, Larock RC. J. Org. Chem. 2006; 71: 236
    • 7b Juteau H, Gareau Y, Lachance H. Tetrahedron Lett. 2005; 46: 4547
    • 7c Martinez AD, Deville JP, Stevens JL, Behar V. J. Org. Chem. 2004; 69: 991
  • 8 For photo-promoted annulation, see: Padwa A, Chiacchio U, Fairfax DJ, Kassir JM, Litrico A, Semones MA, Xu SL. J. Org. Chem. 1993; 58: 6429

    • For selected recent examples on synthesis of β-naphthols, see:
    • 9a Kim HY, Oh K. Org. Lett. 2014; 16: 5934
    • 9b Chen Z, Duan HQ, Jiang X, Zhu YM, Ji SJ, Yang SL. J. Org. Chem. 2015; 80: 8183
    • 9c Okuma K, Horigami K, Nagahora N, Shioj K. Synthesis 2015; 47: 2937
    • 9d Zhang J, Liu Q, Liu X, Zhang S, Jiang P, Wang Y, Luo S, Wang Q. Chem. Commun. 2015; 51: 1297
    • 9e Peng C, Zhang J, Xue J, Li S, Wang NA, Chang J. J. Org. Chem. 2018; 83: 9256
    • 9f Okuma K, Itoyama R, Sou A, Nagahora N, Shioj K. Chem. Commun. 2012; 48: 11145
  • 10 Chang M.-Y, Chen Y.-C, Chan C.-K, Huang GG. Tetrahedron 2015; 71: 2095
  • 11 Chang M.-Y, Chen S.-M, Hsiao Y.-T. J. Org. Chem. 2019; 84: 11687
  • 12 CCDC 1910997 (3t), 1910998 (3ab), 1910999 (3g-1) and 1911000 (4) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
  • 13 Marchal E, Uriac P, Legouin B, Toupet L, van de Weghe P. Tetrahedron 2007; 63: 9979