Synthesis 2020; 52(07): 1140-1146
DOI: 10.1055/s-0039-1690795
paper
© Georg Thieme Verlag Stuttgart · New York

Solvent-Free and Liquid-Phase Iodination of Thiophene Derivatives with Potassium Dichloroiodate Monohydrate

a   Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA   Email: akash.mamon@gmail.com   Email: grigoriy.sereda@usd.edu
,
a   Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA   Email: akash.mamon@gmail.com   Email: grigoriy.sereda@usd.edu
,
Anwar Hussain
a   Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA   Email: akash.mamon@gmail.com   Email: grigoriy.sereda@usd.edu
,
Nikolai Zefirov †
b   Department of Chemistry, Moscow State University, Moscow 119899, Russian Federation
› Author Affiliations
Funding from the University of South Dakota Department of Chemistry is appreciated.
Further Information

Publication History

Received: 13 October 2019

Accepted after revision: 29 December 2019

Publication Date:
23 January 2020 (online)


Deceased

Abstract

Iodination of a series of benzene and thiophene derivatives by potassium dichloroiodate monohydrate was studied with and without a solvent. The liquid substrates tend to be more reactive in water while the solid substrates afford better yields in dichloromethane or under the solvent-free conditions. The 2-substituted thiophenes show good to excellent yields whereas the yield for 3-substituted and 3,4- or 2,4-disubstituted thiophenes and benzene derivatives are significantly lower. The mechanochemical reaction of 5-carbaldehyde-2,2′-bithiophene shows excellent yields, while 2,2′-bithiophene gives practical yields only in dichloromethane. In the case of thiophene and N-acetyl-p-toluidine, electrophilic iodination is accompanied by a small extent of chlorination.

Supporting Information

 
  • References

  • 2 Chaikovski VK, Kharlova TS, Filimonov VD, Saryucheva TA. Synthesis 1999; 748
  • 3 Detty MR, Higgs DE, Nelen MI. Org. Lett. 2001; 3: 349
  • 4 Thompson LA, Ellman JA. Chem. Rev. 1996; 96: 555
    • 5a Dane EL, King SB, Swager TM. J. Am. Chem. Soc. 2010; 132: 7758
    • 5b Jahnke AA, Howe GW, Seferos DS. Angew. Chem. Int. Ed. 2010; 122: 10338
  • 6 Miyaura N, Suzuki AJ. Chem. Rev. 1995; 95: 2457
  • 7 Baba S, Negishi E. J. Am. Chem. Soc. 1976; 98: 6729
  • 8 Azarian D, Dua SS, Eaborn C, Walton DR. J. Organomet. Chem. 1976; 117: C55
  • 9 Bakherad M. Appl. Organomet. Chem. 2013; 27: 125
  • 10 Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L. Green Chem. 2015; 17: 365
  • 11 Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 12a Ryan M, Hynes A, Wheale S, Badyal J, Hardacre C, Ormerod R. Chem. Mater. 1996; 8: 916
    • 12b Heinrich AC, Thiedemann B, Gates PJ, Staubitz A. Org. Lett. 2013; 15: 4666
    • 12c Grolleau J, Frère P, Gohier F. Synthesis 2015; 47: 3901
  • 13 Ren YL, Shang H, Wang J, Tian X, Zhao S, Wang Q, Li F. Adv. Synth. Catal. 2013; 355: 3437
    • 16a Mohanakrishnan AK, Prakash C, Ramesh N. Tetrahedron 2006; 62: 3242
    • 16b Filimonov VD, Krasnokutskaya EA, Lesina YA. Russ. J. Org. Chem. 2003; 39: 875
    • 16c Emmanuvel L, Shukla RK, Sudalai A, Gurunath S, Sivaram S. Tetrahedron Lett. 2006; 47: 4793
  • 17 Barluenga J. Pure Appl. Chem. 1999; 71: 431
  • 18 Stavber S, Jereb M, Zupan M. Synthesis 2008; 1487
    • 19a Kajigaeshi S, Kakinami T, Moriwaki M, Tanaka T, Fujisaki S, Okamoto T. Bull. Chem. Soc. Jpn. 1989; 62: 439
    • 19b Serguchev YA, Davydova V, Makhonkov D, Cheprakov A, Beletskaya I. Zh. Org. Khim. 1985; 21: 2010
  • 20 Zefirov NS, Sereda GA, Sosonuk SE, Zyk NV, Likhomanova TI. Synthesis 1995; 1359
    • 21a Larsen A, Moore C, Sprague J, Cloke B, Moss J, Hoppe J. J. Am. Chem. Soc. 1956; 78: 3210
    • 21b Garden SJ, Torres JC, de Souza Melo SC, Lima AS, Pinto AC, Lima EL. Tetrahedron Lett. 2001; 42: 2089
  • 22 Krasnokutskaya EA, Trusova ME, Gibert N, Filimonov VD. Pharm. Chem. J. 2007; 41: 154
  • 23 Viana GM, de Sequeira Aguiar LC, de Araújo Ferrão J, Simas AB. C, Vasconcelos MG. J. Tetrahedron Lett. 2013; 54: 936
    • 24a Kajigaeshi S, Kakinami TJ. J. Synth. Org. Chem. Jpn. 1993; 51: 366
    • 24b Vatsadze S, Titanyuk I, Chernikov A, Zyk N. Russ. Chem. Bull. 2004; 53: 471
  • 25 Wonneberger H, Ma C.-Q, Gatys MA, Li C, Bäuerle P, Müllen K. J. Phys. Chem. B 2010; 114: 14343
  • 26 Gronowitz S, Hallberg A, Glennow CJ. J. Heterocycl. Chem. 1980; 17: 171
  • 27 Sarkar M, Sereda G. Trends Org. Chem. 2018; 19: 13
  • 28 Valderrama-García B, Rodríguez-Alba E, Morales-Espinoza E, Moineau Chane-ChingK, Rivera E. Molecules 2016; 21: 1
  • 29 De Talancé VL, Hissler M, Zhang L.-Z, Kárpáti T, Nyulászi L, Caras-Quintero D, Bäuerle P, Réau R. Chem. Commun. 2008; 2200
  • 30 Hajipour AR, Arbabian M, Ruoho AE. J. Org. Chem. 2002; 67: 8622
  • 31 Sereda G, Zyk N, Bulanov M, Skadchenko B, Volkov V, Zefirov N. Russ. Chem. Bull. 1996; 45: 2239
  • 32 Bälter M, Li S, Nilsson JR, Andréasson J, Pischel U. J. Am. Chem. Soc. 2013; 135: 10230
  • 33 Xiao W.-J, Alper H. J. Org. Chem. 1999; 64: 9646
  • 34 Kathiravan S, Nicholls IA. Chem. Eur. J. 2017; 23: 7031
  • 35 Azoulay M, Tuffin G, Sallem W, Florent J.-C. Bioorg. Med. Chem. Lett. 2006; 16: 3147
  • 36 CCDC 1911268 (8), 1911270 (9), 1911267 (11a), 1911271 (15), 1911269 (18b), 1913303 (19a), 1916644 (19b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 37 Bruch A, Fröhlich R, Grimme S, Studer A, Curran DP. J. Am. Chem. Soc. 2011; 133: 16270