Synlett 2020; 31(04): 327-333
DOI: 10.1055/s-0039-1690792
account
© Georg Thieme Verlag Stuttgart · New York

Development of a Divergent Route to Erythrina Alkaloids

Sebastian Clementson
a  Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
b  Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark   Email: jesper.kristensen@sund.ku.dk
,
Mikkel Jessing
a  Molecular Discovery and Innovation, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
,
Paulo J. Vital
,
b  Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark   Email: jesper.kristensen@sund.ku.dk
› Author Affiliations
We are grateful to the Innovationsfonden (Innovation Fund Denmark, Grant No. 7038-00149B) for generous support of this project.
Further Information

Publication History

Received: 19 December 2019

Accepted after revision: 02 January 2020

Publication Date:
23 January 2020 (online)


Abstract

Erythrina alkaloids were identified at the end of the 19th century and today, more than 100 members of the erythrinane family have been isolated. They are characterized by a unique tetracyclic, α-tertiary spiroamine scaffold. Herein we detail our efforts towards the development of a divergent enantioselective synthesis of (+)-dihydro-β-erythroidine (DHβE) – one of the most prominent members of this intriguing family of natural products.

1 Introduction

2 Synthetic Strategy

2.1 First Generation

2.2 Second Generation

2.3 Third Generation

2.3.1 Radical Endgame

2.3.2 Completion of the Total Synthesis

3 Conclusion

 
  • References

  • 1 Current address: Bial, R&D Area – Research Department, À Avenida da Siderurgia Nacional, 4745-457 Coronado, Portugal.
  • 2 Reimann E. In Progress in the Chemistry of Organic Natural Products . Herz W, Falk H, Kirby G. Springer; Vienna: 2007: 2
    • 3a Parsons AF, Palframan MJ. In Alkaloids, Vol. 68. Cordell GA. Elsevier; New York: 2010: 39
    • 3b Heller ST, Kiho T, Narayan AR. H, Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 11129
    • 3c Kawasaki T, Onoda N, Watanabe H, Kitahara T. Tetrahedron Lett. 2001; 42: 8003
    • 3d Funk RL, Belmar J. Tetrahedron Lett. 2012; 53: 176
    • 3e Jepsen TH, Glibstrup E, Crestey F, Jensen AA, Kristensen JL. Beilstein J. Org. Chem. 2017; 13: 988
    • 3f Jepsen TH, Jensen AA, Lund MH, Glibstrup E, Kristensen JL. ACS Med. Chem. Lett. 2014; 5: 766
    • 3g Chuang KV, Navarro R, Reisman SE. Chem. Sci. 2011; 2: 1086
    • 3h Blackham EE, Booker-Milburn KI. Angew. Chem. Int. Ed. 2017; 56: 6613
    • 3i Crestey F, Jensen AA, Borch M, Andreasen JT, Andersen J, Balle T, Kristensen JL. J. Med. Chem. 2013; 56: 9673
    • 3j Crestey F, Jensen AA, Sørensen C, Magnus CB, Andreasen JT, Peters GH. J, Kristensen JL. J. Med. Chem. 2018; 61: 1719
    • 4a Fukumoto H, Takahashi K, Ishihara J, Hatakeyama S. Angew. Chem. Int. Ed. 2006; 45: 2731
    • 4b He Y, Funk RL. Org. Lett. 2006; 8: 3689
  • 5 Ocampo R, Dolbier WR. Jr. Tetrahedron 2004; 60: 9325
  • 6 Maeng JH, Funk RL. Org. Lett. 2001; 3: 1125
  • 7 Still WC, Gennari C. Tetrahedron Lett. 1983; 24: 4405
  • 8 Nagasawa K, Ishihara H, Zako Y, Shimizu I. J. Org. Chem. 1993; 58: 2523
  • 9 Alexakis A, Normant JF. Tetrahedron Lett. 1982; 23: 5151
  • 10 Gu P, Zhao Y.-M, Tu YQ, Ma Y, Zhang F. Org. Lett. 2006; 8: 5271
  • 11 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 12 Corey EJ, Kang M, Desai MC, Ghosh AK, Houpis IN. J. Am. Chem. Soc. 1988; 110: 649
  • 13 Stewart IC, Ung T, Pletnev AA, Berlin JM, Grubbs RH, Schrodi Y. Org. Lett. 2007; 9: 1589
    • 14a Gansäuer A, Lauterbach T, Narayan S. Angew. Chem. Int. Ed. 2003; 42: 5556
    • 14b Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
  • 15 McMurry JE, Fleming MP. J. Am. Chem. Soc. 1974; 96: 4708
  • 16 Lo JC, Kim D, Pan C.-M, Edwards JT, Yabe Y, Gui J, Qin T, Gutiérrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
  • 17 Trost BM, Haffner CD, Jebaratnam DJ, Krische MJ, Thomas AP. J. Am. Chem. Soc. 1999; 121: 6183
  • 18 Liu R, Winston-McPherson GN, Yang Z, Zhou X, Song W, Guzei IA, Xu X, Tang W. J. Am. Chem. Soc. 2013; 135: 8201
  • 19 Pappo R, Allen DS, Lemieux RU, Johnson WS. J. Org. Chem. 1956; 21: 478
    • 20a Seyferth D, Marmor RS, Hilbert P. J. Org. Chem. 1971; 36: 1379
    • 20b Gilbert JC, Weerasooriya U. J. Org. Chem. 1982; 47: 1837
    • 21a Trost BM, Schäffner B, Osipov M, Wilton DA. A. Angew. Chem. Int. Ed. 2011; 50: 3548
    • 21b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 22 Behera TK, Jarhad DB, Mobin SM, Singh V. Tetrahedron 2016; 72: 5377
  • 23 Hoffmann RW. Pure Appl. Chem. 1988; 60: 123
    • 24a Kuwajima I, Urabe H. J. Am. Chem. Soc. 1982; 104: 6831
    • 24b Moradi WA, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7996
    • 24c Carfagna C, Musco A, Saliese G. J. Org. Chem. 1991; 56: 261
    • 24d Jørgensen M, Lee S, Liu X, Wolkowski JP, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 12557
  • 25 Shang R, Ji D, Chu L, Fu Y, Liu L. Angew. Chem. Int. Ed. 2011; 50: 4470
  • 26 Clementson S, Jessing M, Pedersen H, Vital P, Kristensen JL. J. Am. Chem. Soc. 2019; 141: 8783