Synthesis, Inhaltsverzeichnis Synthesis 2020; 52(07): 1096-1102DOI: 10.1055/s-0039-1690788 paper © Georg Thieme Verlag Stuttgart · New YorkFacile Synthesis of π-Conjugated Heteroaromatic Compounds via Weak-Base-Promoted Transition-Metal-Free C–N Coupling Takahiro Senoo , Aiko Inoue , Keiji Mori ∗ Department of Applied Chemistry, Graduate school of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan eMail: k_mori@cc.tuat.ac.jp› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A K2CO3-promoted transition-metal-free C–N coupling reaction was developed. When a solution of 1-(2-aminophenyl)-8-iodonaphthalenes in DMSO was treated with 2.5 equivalents of K2CO3 and 5.0 equivalents of MeI, intramolecular C–N coupling reaction proceeded smoothly even at low temperature (room temperature) to afford various heteroaromatic compounds in good chemical yields. Additional experiments suggested that this reaction might have proceeded through an unusual SNAr reaction between haloarenes and a bulky tertiary amine moiety. Key words Key wordsheterocycles - coupling - metal-free - π-conjugated molecule - base-promoted reaction Volltext Referenzen References 1a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435 1b Amines: Synthesis, Properties, and Applications . Lawrence SA. Cambridge University Press; Cambridge: 2004 1c The Chemistry of Anilines . Rappoport Z. Wiley-VCH; Weinheim: 2007 1d Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008 Selected reviews, see: 2a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102 2b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075 3a Li J, Dierschke F, Wu J, Grimsdale AC, Müllen K. J. Mater. Chem. 2006; 16: 96 3b Huang W, Tang FS, Li B, Su JH, Tian H. J. Mater. Chem. C 2014; 2: 1141 3c Cai SY, Tian GJ, Li X, Su JH, Tian H. J. Mater. Chem. A 2013; 1: 11295 3d McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF. Nat. Mater. 2006; 5: 328 3e Nowak-Król A, Wagener R, Kraus F, Mishra A, Bäuerle P, Würthner F. Org. Chem. Front. 2016; 3: 545 For reviews, see: 3f Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K. Chem. Rev. 2010; 110: 6817 3g Zhao X, Zhan X. Chem. Soc. Rev. 2011; 40: 3728 4a Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969 4b Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901 Selected reviews, see: 4c Wolfe JP, Wagaw S, Marcoux JF, Buchwald SL. Acc. Chem. Res. 1998; 31: 805 4d Hartwig JF. Acc. Chem. Res. 1998; 31: 852 4e Hartwig JF. Pure. Appl. Chem. 1999; 71: 1417 4f Hartwig JF. In Modern Arene Chemistry . Astruc D. Wiley-VCH; Weinheim: 2002: 107 4g Hartwig JF. Acc. Chem. Res. 2008; 41: 1534 4h Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338 4i Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283 5a Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174 5b Ullmann F. Justus Liebigs Ann. Chem. 1904; 332: 38 Some selected reviews, see: 5c Hassam J, Sevignon M, Gozzi C, Schultz E, Lemaire M. Chem. Rev. 2002; 102: 1359 5d Nelson TD, Crouch RD. Org. React. 2004; 63: 265 5e Sambiagio C, Marsden SP, Blacker JA, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525 For selected reviews of aryne chemistry, see: 6a Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140 6b Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450 6c Yoshida S. Bull. Chem. Soc. Jpn. 2018; 91: 1293 7a Beller M, Breindl C, Riermeier TH, Eichberger M, Trauthwein H. Angew. Chem. Int. Ed. 1998; 37: 3389 7b See also: Beller M, Breindl C, Riermeier TH, Tillack A. J. Org. Chem. 2001; 66: 1403 8 Shi L, Wang M, Fan C.-A, Zhang F.-M, Tu Y.-Q. Org. Lett. 2003; 5: 3515 9 Bolliger JL, Frech CM. Tetrahedron Lett. 2009; 65: 1180 10a Yuan Y, Thomé I, Kim SH, Chen D, Beyer A, Bonnamour A, Zuidema E, Chang S, Bolm C. Adv. Synth. Catal. 2010; 352: 2892 See also: 10b Thomé I, Bolm C. Org. Lett. 2012; 14: 1892 10c Baars H, Beyer A, Kohlhepp SV, Bolm C. Org. Lett. 2014; 16: 536 11a Liu Z, Larock RC. Org. Lett. 2003; 5: 4673 11b Liu Z, Larock RC. J. Org. Chem. 2006; 71: 3198 12 Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495 13 Bjojgude SS, Kaicharla T, Biju AT. Org. Lett. 2013; 15: 5452 14 Huang P, He B.-Y, Wang H.-M, Lu J.-M. Synthesis 2015; 47: 221 For reviews on chiral Brønsted acids with binaphthyl backbone, see: 15a Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999 15b Terada M. Chem. Commun. 2008; 4097 15c Zamfir A, Schenker S, Freund M, Tsogoeva SM. Org. Biomol. Chem. 2010; 8: 5262 15d Hatano M, Ishihara K. Asian J. Org. Chem. 2014; 3: 352 15e Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539 15f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047 15g Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277 Selected reviews on chiral ligands with binaphthyl backbone, see: 16a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345 16b Feringa BL. Acc. Chem. Res. 2000; 33: 346 16c Hayashi T. Acc. Chem. Res. 2000; 33: 354 16d Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935 16e Kumagai N, Kanai M, Sasai H. ACS Catal. 2016; 6: 4699 17 CCDC 1954895 (2a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 18 Grudzien K, Zukowska K, Malinska M, Wozniak K, Barbasiewicz M. Chem. Eur. J. 2014; 20: 2819 19 Jang YH, Youn SW. Org. Lett. 2014; 16: 3720 Zusatzmaterial Zusatzmaterial Supporting Information