Synlett 2020; 31(07): 641-647
DOI: 10.1055/s-0039-1690778
synpacts
© Georg Thieme Verlag Stuttgart · New York

Ultrahigh-Molecular-Weight Poly(propylene oxide): Preparation and Perspectives

Patrick Walther
,
Charlotte Vogler
,
S.N. gratefully acknowledges financial support from the DFG (German Research Foundation), project numbers NA 1206/2 and 358283783 (CRC 1333).
Further Information

Publication History

Received: 04 November 2019

Accepted after revision: 05 December 2019

Publication Date:
18 December 2019 (online)


Abstract

Conventional approaches for polymerizing substituted epoxides, especially propylene oxide, suffer from side reactions, severely limiting molar masses and control over the end groups of the resulting poly(propylene oxide) (PPO). This has not only complicated the incorporation of PPO moieties into complex defined polymer architectures, but has also hampered consideration of PPO as an interesting material in its own right. In this context, a concise summary of strategies for creating truly high-molecular-mass polyethers is provided, with a focus on a recently developed dual catalytic setup that permits access to PPO molar masses of 106 g/mol and beyond. Based on these advances in the catalytic preparation of polyethers, future perspectives for ultrahigh-molecular-weight (UHMW) PPO as a performance material are identified.

 
  • References

  • 1 Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170
  • 2 Odian G. Principles of Polymerization, 4th ed. Wiley-Interscience; New York: 2004: 548
  • 3 Rexin O, Mülhaupt R. J. Polym. Sci., Part A: Polym. Chem. 2002; 40: 864
  • 5 Blankenburg J, Kersten E, Maciol K, Wagner M, Zarbakhsh S, Frey H. Polym. Chem. 2019; 10: 2863
  • 6 Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Chem. Rev. 2014; 114: 8129
    • 7a Vandenberg EJ. J. Polym. Sci. 1960; 47: 486
    • 7b Vandenberg EJ. J. Polym. Sci., Part A: Polym. Chem. 1969; 7: 525
  • 8 Berta DA, Vandenberg EJ. In Handbook of Elastomers, 2nd ed. Bhowmick AK. Stephens H. L.; Marcel Dekker; New York: 2001: 683
  • 9 Ferrier RC. Jr, Pakhira S, Palmon SE, Rodriguez CG, Goldfeld DJ, Iyiola OO, Chwatko M, Mendoza-Cortes JL, Lynd NA. Macromolecules 2018; 51: 1777
  • 10 Inoue S. J. Polym. Sci., Part A: Polym. Chem. 2000; 38: 2861
  • 11 Billouard C, Carlotti S, Desbois P, Deffieux A. Macromolecules 2004; 37: 4038
  • 12 Park SC, Kim BJ, Hawker CJ, Kramer EJ, Bang J, Ha JS. Macromolecules 2007; 40: 8119
    • 13a Peretti KL, Ajiro H, Cohen CT, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11566
    • 13b Hirahata W, Thomas RM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2008; 130: 17658
    • 14a Chen Y, Shen J, Liu S, Zhao J, Wang Y, Zhang G. Macromolecules 2018; 51: 8286
    • 14b Zhang C.-J, Duan H.-Y, Hu L.-F, Zhang C.-H, Zhang X.-H. ChemSusChem 2018; 11: 4209
  • 15 Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, Ye X, Zhang G. Angew. Chem. Int. Ed. 2019; 58: 15478 ; Angew. Chem. 2019, 43, 15624
  • 16 Zhang D.-D, Feng X, Gnanou Y, Huang K.-W. Macromolecules 2018; 51: 5600
    • 17a Raynaud J, Absalon C, Gnanou Y, Taton D. J. Am. Chem. Soc. 2009; 131: 3201
    • 17b Raynaud J, Ottou WN, Gnanou Y, Taton D. Chem. Commun. 2010; 46: 3203
    • 18a Roy MM. D, Rivard E. Acc. Chem. Res. 2017; 50: 2017
    • 18b Naumann S. Chem. Commun. 2019; 55: 11658
    • 18c Crocker RD, Nguyen TV. Chem. Eur. J. 2016; 22: 2208
  • 19 Schuldt R, Kastner J, Naumann S. J. Org. Chem. 2019; 84: 2209
    • 20a Wang Q, Zhao W, Zhang S, He J, Zhang Y, Chen EY.-X. ACS Catal. 2018; 8: 3571
    • 20b Iturmendi A, Garcia N, Jaseer EA, Munárriz J, Sanz Miguel PJ, Polo V, Iglesias M, Oro LA. Dalton Trans. 2016; 45: 12835
    • 20c Wang Y.-B, Wang Y.-M, Zhang W.-Z, Lu X.-B. J. Am. Chem. Soc. 2013; 135: 11996
    • 20d Powers K, Hering-Junghans C, McDonald R, Ferguson MJ, Rivard E. Polyhedron 2016; 108: 8
    • 20e Walther P, Frey W, Naumann S. Polym. Chem. 2018; 9: 3674
  • 21 Naumann S, Thomas AW, Dove AP. Angew. Chem. Int. Ed. 2015; 54: 9550 ; Angew. Chem. 2015, 127, 9686
  • 22 Walther P, Krauss A, Naumann S. Angew. Chem. Int. Ed. 2019; 58: 10737 ; Angew. Chem.; 2019, 131, 10848
  • 23 Hong M, Chen J, Chen EY.-X. Chem. Rev. 2018; 118: 10551
    • 24a Aharoni SM. Macromolecules 1983; 16: 1722
    • 24b Smith BA, Samulski ET, Yu LP, Winnik MA. Macromolecules 1985; 18: 1901
  • 25 Li H, Tang W, Huang Y, Ruan W, Zhang M. Polym. Chem. 2019; 10: 2697
  • 26 Dimitrov I, Tsvetanov CB. In Polymer Science: A Comprehensive Reference, Vol. 4. Matyjaszewski K, Möller M. Elsevier; Amsterdam: 2012. Chap. 4.21; 55
  • 27 Verkoyen P, Johann T, Blankenburg J, Czysch C, Frey H. Polym. Chem. 2018; 9: 5327
  • 28 Gervais M, Forens A, Ibarboure E, Carlotti S. Polym. Chem. 2018; 9: 2660