Synlett 2020; 31(03): 295-299
DOI: 10.1055/s-0039-1690775
letter
© Georg Thieme Verlag Stuttgart · New York

Cyclopentene Assembly by Microwave-Assisted Domino Reaction of Donor–Acceptor Cyclopropanes with Ketals

a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: golantsov_ne@pfur.ru   Email: lvoskressensky@sci.pfu.edu.ru
,
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: golantsov_ne@pfur.ru   Email: lvoskressensky@sci.pfu.edu.ru
,
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: golantsov_ne@pfur.ru   Email: lvoskressensky@sci.pfu.edu.ru
,
Igor V. Trushkov
b  N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky pr., Moscow 119991, Russian Federation
,
a  Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation   Email: golantsov_ne@pfur.ru   Email: lvoskressensky@sci.pfu.edu.ru
› Author Affiliations
This research was funded by the Ministry of Education and Science of the Russian Federation (Project 4.5386.2017/8.9).
Further Information

Publication History

Received: 19 October 2019

Accepted after revision: 02 December 2019

Publication Date:
02 January 2020 (online)


Abstract

A Lewis acid-mediated domino reaction of acetals derived from aromatic ketones with 2-(het)arylcyclopropane-1,1-diesters has been developed. The reaction provides a convenient approach to cyclopentenes and related polycyclic ring systems.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Ivanova OA, Trushkov IV. Chem. Rec. 2019; 19: 2189
    • 1b Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 1c Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1
    • 1d Kumar I. RSC Adv. 2014; 4: 16397
    • 1e de Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912
    • 1f Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 1g Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 1h Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
  • 2 For the synthesis of DA cyclopropanes, see: Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Russ. Chem. Rev. 2018; 87: 201
    • 3a Verma K, Taily IM, Banerjee P. Org. Biomol. Chem. 2019; 17: 8149
    • 3b Zhou Q, Chen B, Huang X.-B, Zeng Y.-L, Chu W.-D, He L, Liu Q.-Z. Org. Chem. Front. 2019; 6: 1891
    • 3c Kaga A, Gandamana DA, Tamura S, Demirelli M, Chiba S. Synlett 2017; 28: 1091
    • 3d Dey R, Banerjee P. Org. Lett. 2017; 19: 304
    • 4a Campbell WJ, Johnson JS, Parsons AT, Pohlhaus PD, Sanders SD. J. Org. Chem. 2010; 75: 6317
    • 4b Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
    • 4c Ding W.-P, Du J, Liu X.-Y, Chen D, Ding C.-H, Deng Q.-H, Hou X.-L. Synlett 2019; 30: 947
    • 5a Xie M.-S, Zhao G.-F, Qin T, Suo Y.-B, Qu G.-R, Guo H.-M. Chem. Commun. 2019; 55: 1580
    • 5b Matsumoto Y, Nakatake D, Yazaki R, Ohshima T. Chem. Eur. J. 2018; 24: 6062
    • 5c Augustin AU, Sensse M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 14293
    • 6a Huang X.-B, Li X.-J, Li T.-T, Chen B, Chu W.-D, He L, Liu Q.-Z. Org. Lett. 2019; 21: 1713
    • 6b Ling J, Laugeois M, Ratovelomanana-Vidal V, Vitale MR. Synlett 2018; 29: 2288
    • 7a Pagenkopf BL, Vemula N. Eur. J. Org. Chem. 2017; 2561
    • 7b Tamilarasan VJ, Srinivasan K. J. Org. Chem. 2019; 84: 8782
    • 8a Mondal M, Panda M, McKee V, Kerrigan NJ. J. Org. Chem. 2019; 84: 11983
    • 8b Liu J, Li M.-M, Qu B.-L, Lu L.-Q, Xiao W.-J. Chem. Commun. 2019; 55: 2031
    • 8c Augustin AU, Busse M, Jones PG, Werz DB. Org. Lett. 2018; 20: 820
    • 8d Feng M, Yang P, Yang G, Chen W, Chai Z. J. Org. Chem. 2018; 83: 174
    • 9a Kerr MA. Isr. J. Chem. 2016; 56: 476
    • 9b Tabolin AA, Ioffe SL. Isr. J. Chem. 2016; 56: 385
    • 9c Petzold M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
    • 9d Dhote PS, Ramana CV. Org. Lett. 2019; 21: 6221
    • 9e Xu P.-W, Chen C, Liu J.-K, Song Y.-T, Zhou F, Yan J, Zhou J. J. Org. Chem. 2018; 83: 12763
    • 9f Chagarovskiy AO, Vasin VS, Kuznetsov VV, Ivanova OA, Rybakov VB, Shumsky AN, Makhova NN, Trushkov IV. Angew. Chem. Int. Ed. 2018; 57: 10338
    • 10a Garve LK. B, Pawliczek M, Wallbaum J, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 521
    • 10b Wang Z.-H, Zhang H.-H, Wang D.-M, Xu P.-F, Luo Y.-C. Chem. Commun. 2017; 53: 8521
    • 10c Zhang C, Tian J, Ren J, Wang Z. Chem. Eur. J. 2017; 23: 1231
    • 11a Vince R, Hua M. J. Med. Chem. 1990; 33: 17
    • 11b Orr DC, Figueiredo HT, Mo C.-L, Penn CR, Cameron JM. J. Biol. Chem. 1992; 267: 4177
    • 11c Foster RH, Faulds D. Drugs 1998; 55: 729
  • 12 Vinik A, Rosenstock J, Sharma U, Feins K, Hsu C, Merante D. Diabetes Care 2014; 37: 3253
  • 13 Roach B, Eisner T, Meinwald J. J. Org. Chem. 1990; 55: 4047
    • 14a Zou Y, Daane KM, Bentley WJ, Millar JG. J. Agric. Food Chem. 2010; 58: 4977
    • 14b Figadère BA, McElfresh JS, Borchardt D, Daane KM, Bentley W, Millar JG. Tetrahedron Lett. 2007; 48: 8434
  • 15 Mao S.-C, Guo Y.-W. J. Nat. Prod. 2006; 69: 1209
  • 16 Graziano L, Iesce R, Cermola F, Cimminello G. J. Chem. Res., Synop. 1992; 4
  • 17 Ding W.-P, Zhang G.-P, Jiang Y.-J, Du J, Liu X.-Y, Chen D, Ding C.-H, Deng Q.-H, Hou X.-L. Org. Lett. 2019; 21: 6805
    • 18a Iwama T, Matsumoto H, Ito T, Shimizu H, Kataoka T. Chem. Pharm. Bull. 1998; 46: 913
    • 18b Jung ME, Rayle HL. J. Org. Chem. 1997; 62: 4601
    • 18c Chuang C.-P, Hou S.-S, Wu R.-R. Synth. Commun. 1992; 22: 467
    • 18d Feldman KS, Ruckle RE, Romanelli AL. Tetrahedron Lett. 1989; 30: 5845
    • 19a Luo Z, Zhou B, Li Y. Org. Lett. 2012; 14: 2540
    • 19b Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
  • 20 Gu X, Li X, Qu Y, Yang Q, Li P, Yao Y. Chem. Eur. J. 2013; 19: 11878
  • 21 An efficient Rh-catalyzed asymmetric [3+2]-photocycloaddition of 2-(R)-cyclopropyl 1-mesitylimidazol-2-yl ketones with alkynes was reported recently; see: Huang X, Lin J, Shen T, Harms K, Marchini M, Ceroni P, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 5454
    • 22a Nguyen TN, May JA. Org. Lett. 2018; 20: 112
    • 22b Racine S, Hegedus B, Scopelliti R, Waser J. Chem. Eur. J. 2016; 22: 11997
    • 22c Perrin FG, Kiefer G, Jeanbourquin L, Racine S, Perrotta D, Waser J, Scopelliti R, Severin K. Angew. Chem. Int. Ed. 2015; 54: 13393
    • 22d Mackay WD, Fistikci M, Carris RM, Johnson JS. Org. Lett. 2014; 16: 1626
    • 22e Xia X.-F, Song X.-R, Liu X.-Y, Liang Y.-M. Chem. Asian J. 2012; 7: 1538
    • 22f Qi X, Ready JM. Angew. Chem. Int. Ed. 2008; 47: 7068
    • 22g Yadav VK, Sriramurthy V. Angew. Chem. Int. Ed. 2004; 43: 2669
    • 23a Novikov RA, Borisov DD, Tarasova AV, Tkachev YaV, Tomilov YV. Angew. Chem. Int. Ed. 2018; 57: 10293
    • 23b Novikov RA, Tarasova AV, Denisov DA, Borisov DD, Korolev VA, Timofeev VP, Tomilov YV. J. Org. Chem. 2017; 82: 2724
    • 23c Rakhmankulov ER, Ivanov KL, Budynina EM, Ivanova OA, Chagarovskiy AO, Skvortsov DA, Latyshev GV, Trushkov IV, Melnikov MYa. Org. Lett. 2015; 17: 770
  • 24 Dimethyl 4-(4-Methoxyphenyl)-2-phenylcyclopent-2-ene-1,1-dicarboxylate (3a); Typical Procedure Anhyd ZnCl2 (68 mg, 0.5 mmol, 100 mol%) was added to a solution of ketal 1a (83 mg, 0.5 mmol) and the cyclopropane 2a (132 mg, 0.5 mmol) in anhyd DCE (5 mL) in a 10 mL glass reaction vial. The vial was placed in a microwave oven and irradiated at 150 °C for 30 min, then left to cool to r.t. The mixture was concentrated in vacuo, and the residue was dissolved in CH2Cl2 (25 mL), washed with 5% aq NaOH (2 × 20 mL) and brine (20 mL) then dried (Na2SO4). The CH2Cl2 was evaporated in vacuo and the crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:5)] to give a pale-yellow oil; yield: 141 mg (77%); Rf = 0.47 (EtOAc–hexane, 1:5). IR (film): 3095, 3059, 2953, 2922, 2838, 1731, 1609, 1512, 1435, 1251, 1175, 1080, 1035, 971, 832, 759, 695 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.49–7.46 (m, 2 H), 7.33–7.29 (m, 2 H), 7.28–7.26 (m, 1 H), 7.20 (d, J = 8.7 Hz, 2 H), 6.88 (d, J = 8.7 Hz, 2 H), 6.33 (d, J = 2.2 Hz, 1 H), 4.13 (ddd, J = 8.2, 7.7, 2.2 Hz, 1 H), 3.81 (s, 3 H), 3.77 (s, 3 H), 3.65 (s, 3 H), 3.22 (dd, J = 13.1, 7.7 Hz, 1 H), 2.53 (dd, J = 13.1, 8.2 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 171.9, 171.7, 158.7, 142.7, 137.1, 135.77, 135.0, 128.6 (2 C), 128.2 (2 C), 127.7, 127.5 (2 C), 114.2 (2 C), 68.0, 55.4, 52.9, 52.7, 48.6, 46.3. MS (EI, 70 eV): m/z (%) = 366 (8) [M]+, 365 (6) [M – H]+, 307 (10) [M – CO2Me]+, 306 (100) [M – CO2Me – H]+, 248 (4), 247 (17), 59 (3). HRMS (TOF ES+): m/z [M + Na]+ calcd for C22H22NaO5: 389.1359; found: 389.1353.
    • 25a Piutti C, Quartieri F. Molecules 2013; 18: 12290
    • 25b Wenz DR, Read de Alaniz J. Org. Lett. 2013; 15: 3250
  • 26 de Nanteuil F, Serrano E, Perrotta D, Waser J. J. Am. Chem. Soc. 2014; 136: 6239