Synlett 2020; 31(05): 450-454
DOI: 10.1055/s-0039-1690770
letter
© Georg Thieme Verlag Stuttgart · New York

A Reduction-Sensitive Fluorous Fluorogenic Coumarin

Margeaux A. Miller
,
Rachael A. Day
,
Daniel A. Estabrook
,
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA   Email: Sletten@chem.ucla.edu
› Author Affiliations
This work was funded by the following grants to E.M.S.: The University of California Cancer Research Coordinating Committee (UC CRCC, Grant No. CNR-18-524809), the American Chemical Society Petroleum Research Fund (ACS PRF, Grant No. 57379-DNI4), the Alfred P. Sloan Award (FG-2018-10855), and the Hellman Fellows Award. M.A.M. and D.A.E. were supported by T32 training grants from the National Institute of General Medical Sciences (NIH, Grant No. 5T32GM008496 and 5T32GM067555-12). D.A.E. and R.A.D. were supported by the Majeti-Alapati Fellowship and the Paul Winstein Fellowship. NMR and HRMS data were obtained on instruments funded by the National Science Foundation (NSF, Grant No. MRI CHE-1048804) and the National Institute of General Medical Sciences (NIH, Grant No. 1S10OD016387-01), respectively.
Further Information

Publication History

Received: 25 October 2019

Accepted: 27 November 2019

Publication Date:
18 December 2019 (online)


These authors contributed equally to this work

Published as part of the Special Section 11th EuCheMS Organic Division Young Investigator Workshop

Abstract

Fluorophores that are sensitive to their environment are useful tools for sensing chemical changes and probing biological systems. Here, we extend responsive fluorophores to the fluorous phase with the synthesis of a reduction-sensitive fluorous-soluble fluorogenic coumarin. We demonstrate that this fluorophore responds to various reducing agents, most notably glutathione, a key biological reductant. The fluorous solubility of this probe allows for its encapsulation into two different fluorous nanomaterials: perfluorocarbon nanoemulsions and fluorous core-shell micelles. The fluorogenic coumarin allows us to study how efficiently these vehicles protect the contents of their interior from the external environment. In the presence of glutathione, we observe different degrees of release for micelles and emulsions. This understanding will help guide future applications of fluorous nanomaterials as drug delivery vehicles.

Supporting Information

 
  • References and Notes

  • 1 Klymchenko AS. Acc. Chem. Res. 2017; 50: 366
  • 2 Nadler A, Schultz C. Angew. Chem. Int. Ed. 2013; 52: 2408
  • 3 Grimm JB, Heckman LM, Lavis LD. Prog. Mol. Biol. Transl. Sci. 2013; 113: 1
  • 4 Lavis LD, Raines RT. ACS Chem. Biol. 2014; 9: 855
  • 5 Reichardt C. Chem. Rev. 1994; 94: 2319
  • 6 Lee MH, Kim JS, Sessler JL. Chem. Soc. Rev. 2015; 44: 4185
  • 7 Cotruvo J. AJr, Aron AT, Ramos-Torres KM, Chang CJ. Chem. Soc. Rev. 2015; 44: 4400
  • 8 Carter KP, Young AM, Palmer AE. Chem. Rev. 2014; 114: 4564
  • 9 Zheng H, Zhan X.-Q, Bian Q.-N, Zhang X.-J. Chem. Commun. 2013; 49: 429
  • 10 Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN. PLoS One 2011; 6: e14564
  • 11 Zhu H, Fan J, Du J, Peng X. Acc. Chem. Res. 2016; 49: 2115
  • 12 Hammers MD, Pluth MD. Anal. Chem. 2014; 86: 7135
  • 13 Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z. Angew. Chem. Int. Ed. 2009; 48: 4034
  • 14 Dickinson BC, Huynh C, Chang CJ. J. Am. Chem. Soc. 2010; 132: 5906
  • 15 Burnworth M, Rowan SJ, Weder C. Chem. Eur. J. 2007; 13: 7828
  • 16 Zhang S.-W, Swager TM. J. Am. Chem. Soc. 2003; 125: 3420
  • 17 Dale TJ, Rebek J. J. Am. Chem. Soc. 2006; 128: 4500
  • 18 Díaz de Greñu B, Moreno D, Torroba T, Berg A, Gunnars J, Nilsson T, Nyman R, Persson M, Pettersson J, Eklind I, Wästerby P. J. Am. Chem. Soc. 2014; 136: 4125
  • 19 Gladysz JA, Jurisch M. Top. Curr. Chem. 2012; 308: 1
  • 20 Riess JG. Artif. Cells, Blood Substitutes, Biotechnol. 2005; 33: 47
  • 21 Gladysz JA, Curran DP, Horváth IT. Handbook of Fluorous Chemistry . Wiley-VHC; Weinheim: 2004
  • 22 Krafft MP, Riess JG. J. Polym. Sci., Part A: Polym. Chem. 2007; 45: 1185
  • 23 Riess JG. Artif. Cells, Blood Substitutes, Biotechnol. 2006; 34: 567
  • 24 Sletten EM, Swager TM. J. Am. Chem. Soc. 2014; 136: 13574
  • 25 Sun H, Putta A, Kloster JP, Tottempudi UK. Chem. Commun. 2012; 48: 12085
  • 26 Yoshinaga K, Swager T. Synlett 2018; 29: 2509
  • 27 Kölmel DK, Hörner A, Castañeda JA, Ferencz JA. P, Bihlmeier A, Nieger M, Bräse S, Padilha LA. J. Phys. Chem. C 2016; 120: 4538
  • 28 Freed BK, Biesecker J, Middleton WJ. J. Fluor. Chem. 1990; 48: 63
  • 29 El Bakkari M, Fronton B, Luguya R, Vincent J.-M. J. Fluor. Chem. 2006; 127: 558
  • 30 Wang C, Wu E, Wu X, Xu X, Zhang G, Pu L. J. Am. Chem. Soc. 2015; 137: 3747
  • 31 Kirrane TM, Middleton WJ. J. Fluor. Chem. 1993; 62: 289
  • 32 Matsui M, Shibata K, Muramatsu H, Sawada H, Nakayama M. Chem. Ber. 1992; 125: 467
  • 33 Matsui M, Joglekar B, Ishigure Y, Shibata K, Muramatsu H, Murata Y. Bull. Chem. Soc. Jpn. 1993; 66: 1790
  • 34 Setsukinai K, Urano Y, Kikuchi K, Higuchi T, Nagano T. J. Chem. Soc., Perkin Trans. 2 2000; 2453
  • 35 Muthuramu K, Ramamurthy V. J. Photochem. 1984; 26: 57
  • 36 Taneja L, Sharma AK, Singh RD. J. Lumin. 1995; 63: 203
  • 37 Satyam A. Bioorg. Med. Chem. Lett. 2008; 18: 3196
  • 38 Latorre A, Couleaud P, Aires A, Cortajarena AL, Somoza A. Eur. J. Med. Chem. 2014; 82: 355
  • 39 2-Oxo-2H-chromen-7-yl [2-(Pyridin-2-yldisulfaneyl)ethyl] Carbonate (5) To activated disulfide 4 (600 mg, 1.64 mmol, 1.00 equiv) was added 7-hydroxycoumarin 3 (318 mg, 1.97 mmol, 1.20 equiv), DMF (31 mL, 0.05 M), and DMAP (23 mg, 0.20 mmol, 0.12 equiv). DIPEA (340 μL, 1.97 mmol, 1.20 equiv) was added to the solution. The solution was stirred for 21 h at room temperature and then concentrated. The crude material was purified by column chromatography (silica gel, 35% → 50% EtOAc/hexanes). Extensive drying provided the product as a white amorphous solid (427 mg, 1.14 mmol, 70% yield). Rf = 0.17 (in 40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 8.49 (ddd, J = 4.8, 1.8, 1.0 Hz, 1 H), 7.71–7.62 (m, 3 H), 7.50 (d, J = 8.5 Hz, 1 H), 7.21 (d, J = 2.2 Hz, 1 H), 7.16–7.08 (m, 2 H), 6.41 (d, J = 9.6 Hz, 1 H), 4.55 (t, J = 6.4 Hz, 2 H), 3.16 (t, J = 6.4 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 160.3, 159.3, 154.8, 153.3, 152.6, 150.0, 142.8, 137.2, 128.8, 121.2, 120.3, 117.8, 117.0, 116.5, 110.0, 66.7, 36.9. HRMS (ESI): m/z calcd for C17H14NO5S2 + [M + H]+ : 376.0313; found: 376.0307.
  • 40 Miller MA, Sletten EM. Org. Lett. 2018; 20: 6850
  • 41 Fluorous Fluorogenic Coumarin 2 To fluorous thiol 6 (120 mg, 0.158 mmol, 1.10 equiv) was added 5 (54 mg, 0.14 mmol, 1.0 equiv) and CHCl3 (2.9 mL, 0.05 M). The solution became pale yellow within 5 min and became more yellow over time. The reaction was stirred at room temperature for 18 h. The crude product was evaporated onto silica from CHCl3 and purified by column chromatography (silica gel, 20% → 40% → 60% EtOAc/hexanes) to afford the product as a white solid (107 mg, 0.105 mmol, 75% yield). The average yield across three reactions was 74%. Rf = 0.66 (in 40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 7.69 (dd, J = 9.6, 0.6 Hz, 1 H), 7.50 (d, J = 8.5 Hz, 1 H), 7.22 (d, J = 2.3 Hz, 1 H), 7.14 (dd, J = 8.5, 2.3 Hz, 1 H), 6.42 (d, J = 9.6 Hz, 1 H), 4.55 (t, J = 6.5 Hz, 2 H), 3.04 (t, J = 6.5 Hz, 2 H), 2.79 (d, J = 6.1 Hz, 2 H), 2.19–2.05 (m, 4 H), 1.90 (h, J = 6.3 Hz, 1 H), 1.84–1.67 (m, 4 H). 13C NMR (126 MHz, CDCl3): δ = 160.3, 154.8, 153.3, 152.8, 142.8, 128.8, 117.7, 117.1, 116.5, 110.0, 66.8, 43.2, 36.8, 36.7, 28.2 (t, J CF = 22.6 Hz), 23.0 (t, J CF = 31.4 Hz). 19F NMR (282 MHz, CDCl3): δ = –80.6 to –80.9 (m), –114.2 to –114.5 (br s, 4 F), –121.9 (br s, 4 F), –122.8 (br s, 4 F), –123.3 (br s, 4 F), –125.9 to –126.3 (m, 4 F). HRMS (ESI): m/z calcd for C30H20F26O5S2 [M + H]+: 1019.0415; found: 1019.0405.
  • 42 TCEP is rapidly oxidized in phosphate buffers at pH 7.4, likely leading to reduced signal. See: Han JC, Han GY. Anal. Biochem. 1994; 220: 5
  • 43 Although 2 was soluble in fluorous solvent, there was aggregation seen via a hypsochromic shoulder in the absorbance spectra in all solvents tested (Figure S1 in the SI).
  • 44 Smith CV, Jones DP, Guenthner TM, Lash LH, Lauterburg BH. Toxicol. Appl. Pharmacol. 1996; 140: 1
  • 45 Montero D, Tachibana C, Rahr Winther J, Appenzeller-Herzog C. Redox Biol. 2013; 1: 508
  • 46 Sletten EM, Swager TM. Chem. Sci. 2016; 7: 5091
  • 47 Day RA, Estabrook DA, Logan JK, Sletten EM. Chem. Commun. 2017; 53: 13043
  • 48 Estabrook DA, Ennis AF, Day RA, Sletten EM. Chem. Sci. 2019; 10: 3994
  • 49 Winter PM. Scientifica (Cairo) 2014; 2014: 746574
  • 50 This is in agreement with a previous study that found Zonyl FSN-100 to adopt 3.0 nm spherical core-shell micelles in aqueous solutions, with a compact fluorous core of 1.36 nm and hydrated shell of 0.84 nm. See: Škvarla J, Uchman M, Procházka K, Tošner Z, Garamus VM, Pispas S, Štěpánek M. Colloids Surf., A 2014; 443: 209