Synthesis 2020; 52(02): 219-226
DOI: 10.1055/s-0039-1690726
paper
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Promoted C2 Trifluoromethylation of Quinoline N-Oxides

Ce Liang
a   MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China   Email: gaoguol@hit.edu.cn
,
Wang-Tao Zhuo
a   MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China   Email: gaoguol@hit.edu.cn
,
Yan-Ning Niu
b   Department of Teaching and Research, Nanjing Forestry University, Huaian 223003, P. R. of China
,
Guo-Lin Gao
a   MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China   Email: gaoguol@hit.edu.cn
› Author Affiliations
This work was supported by National Natural Science Foundation of China (No. 21302029), the Fundamental Research Funds for the Central Universities (HIT.NSRIF.2014064), and the Heilongjiang Postdoctoral Science Foundation (No. LBH-Z14104).
Further Information

Publication History

Received: 03 August 2019

Accepted after revision: 07 October 2019

Publication Date:
28 October 2019 (online)


Abstract

A photoredox catalytic strategy has been described for the direct C2 trifluoromethylation of quinoline N-oxides. This reaction is compatible with a range of synthetically relevant functional groups for providing efficient synthesis of a variety of C2 trifluoromethyl quinoline N-oxides at room temperature. Mechanistic studies indicated that the reaction proceeds via a radical pathway.

Supporting Information

 
  • References

  • 1 Albini A. Synthesis 1993; 263
    • 2a Danieli B, Lesma G, Palmisano G, Riva R, Tollari S. J. Org. Chem. 1984; 49: 547
    • 2b Fleischhacker W, Richter B. Chem. Ber. 1979; 112: 2539
    • 2c Rosenmund P, Haase WH, Kaiser K. Chem. Ber. 1968; 101: 2754
    • 3a Pearson AJ, Kwak Y. Tetrahedron Lett. 2005; 46: 3407
    • 3b Ono T, Henderson P. Tetrahedron Lett. 2002; 43: 7961
    • 3c Godfrey G, Ganem B. Tetrahedron Lett. 1990; 31: 4825
    • 4a Malkov AV, Kočovský P. Eur. J. Org. Chem. 2007; 29
    • 4b Burkus J. J. Org. Chem. 1962; 27: 474
    • 4c Chelucci G, Murineddu G, Pinna GA. Tetrahedron: Asymmetry 2004; 15: 1373
    • 5a Dasgupta B, Donaldson WA. Tetrahedron Lett. 1998; 39: 343
    • 5b Luh T.-Y. Coord. Chem. Rev. 1984; 60: 255
    • 5c Karayannis N. Coord. Chem. Rev. 1973; 11: 93
    • 6a Ganley B, Chowdhury G, Bhansali J, Daniels JS, Gates KS. Bioorg. Med. Chem. 2001; 9: 2395
    • 6b Reddy SB, Williamson SK. Expert Opin. Inv. Drug. 2009; 18: 77
  • 7 Ihsan A, Wang X, Tu HG, Zhang W, Dai MH, Peng DP, Wang YL, Huang LL, Chen DM, Mannan S, Tao YF, Liu ZL, Yuan ZH. Food Chem. Toxicol. 2013; 51: 330
    • 8a Debnath AK. J. Med. Chem. 2003; 46: 4501
    • 8b Palani A, Tagat JR. J. Med. Chem. 2006; 49: 2851
    • 8c Tagat JR, Steensma RW, McCombie SW, Nazareno DV, Lin S.-I, Neustadt BR, Cox K, Xu S, Wojcik L, Murray MG, Vantuno N, Baroudy BM, Strizki JM. J. Med. Chem. 2001; 44: 3343
  • 9 Miroshnikova OV, Hudson TH, Gerena L, Kyle DE, Lin AJ. J. Med. Chem. 2007; 50: 889
  • 10 Ibrahim H, Furiga A, Najahi E, Pigasse Henocq C, Nallet JP, Roques C, Aubouy A, Sauvain M, Constant P, Daffe M, Nepveu F. J. Antibiot. 2012; 65: 499
    • 11a Lumeras W, Caturla F, Vidal L, Esteve C, Balague C, Orellana A, Dominguez M, Roca R, Huerta JM, Godessart N, Vidal B. J. Med. Chem. 2009; 52: 5531
    • 11b Lumeras W, Vidal L, Vidal B, Balague C, Orellana A, Maldonado M, Dominguez M, Segarra V, Caturla F. J. Med. Chem. 2011; 54: 7899
  • 12 Mfuh AM, Larionov OV. Curr. Med. Chem. 2015; 22: 2819
    • 13a Fernandes G, de Souza PC, Marino LB, Chegaev K, Guglielmo S, Lazzarato L, Fruttero R, Chung MC, Pavan FR, Dos Santos JL. Eur. J. Med. Chem. 2016; 123: 523
    • 13b Dos Santos Fernandes GF, de Souza PC, Moreno-Viguri E, Santivanez-Veliz M, Paucar R, Perez-Silanes S, Chegaev K, Guglielmo S, Lazzarato L, Fruttero R, Man ChinC, da Silva PB, Chorilli M, Solcia MC, Ribeiro CM, Silva CS. P, Marino LB, Bosquesi PL, Hunt DM, de Carvalho LP. S, de Souza Costa CA, Cho SH, Wang Y, Franzblau SG, Pavan FR, Dos Santos JL. J. Med. Chem. 2017; 60: 8647
    • 13c Chopra S, Koolpe GA, Tambo-Ong AA, Matsuyama KN, Ryan KJ, Tran TB, Doppalapudi RS, Riccio ES, Iyer LV, Green CE, Wan B, Franzblau SG, Madrid PB. J. Med. Chem. 2012; 55: 6047
    • 13d Velezheva V, Brennan P, Ivanov P, Kornienko A, Lyubimov S, Kazarian K, Nikonenko B, Majorov K, Apt A. Bioorg. Med. Chem. Lett. 2016; 26: 978
    • 13e Landge S, Mullick AB, Nagalapur K, Neres J, Subbulakshmi V, Murugan K, Ghosh A, Sadler C, Fellows MD, Humnabadkar V, Mahadevaswamy J, Vachaspati P, Sharma S, Kaur P, Mallya M, Rudrapatna S, Awasthy D, Sambandamurthy VK, Pojer F, Cole ST, Balganesh TS, Ugarkar BG, Balasubramanian V, Bandodkar BS, Panda M, Ramachandran V. Bioorg. Med. Chem. 2015; 23: 7694
    • 14a Bertinaria M, Guglielmo S, Rolando B, Giorgis M, Aragno C, Fruttero R, Gasco A, Parapini S, Taramelli D, Martins YC, Carvalho LJ. Eur. J. Med. Chem. 2011; 46: 1757
    • 14b Pantaleo A, Ferru E, Vono R, Giribaldi G, Lobina O, Nepveu F, Ibrahim H, Nallet JP, Carta F, Mannu F, Pippia P, Campanella E, Low PS, Turrini F. Free Radic. Biol. Med. 2012; 52: 527
    • 14c Tahar R, Vivas L, Basco L, Thompson E, Ibrahim H, Boyer J, Nepveu F. J. Antimicrob. Chemother. 2011; 66: 2566
    • 14d Bertinaria M, Orjuela-Sanchez P, Marini E, Guglielmo S, Hofer A, Martins YC, Zanini GM, Frangos JA, Gasco A, Fruttero R, Carvalho LJ. J. Med. Chem. 2015; 58: 7895
    • 14e Mott BT, Cheng KC.-C, Guha R, Kommer VP, Williams DL, Vermeire JJ, Cappello M, Maloney DJ, Rai G, Jadhav A, Simeonov A, Inglese J, Posner GH, Thomas CJ. MedChemComm 2012; 3: 1505
    • 14f Najahi E, Rakotoarivelo NV, Valentin A, Nepveu F. Eur. J. Med. Chem. 2014; 76: 369
    • 15a Olea-Azar C, Rigol C, Mendizabal F, Cerecetto H, Maio R, Gonzalez M, Porcal W, Morello A, Repetto Y, Maya J. Lett. Drug Des. Discov. 2005; 2: 294
    • 15b Hernandez P, Rojas R, Gilman RH, Sauvain M, Lima LM, Barreiro EJ, Gonzalez M, Cerecetto H. Eur. J. Med. Chem. 2013; 59: 64
    • 15c Jorge SD, Ishii M, Palace-Berl F, Ferreira AK, Luiz de Sá Júnior P, Alfredo de Oliveira A, Sonehara IY, Pasqualoto KF. M, Tavares LC. MedChemComm 2012; 3: 824
    • 15d Burguete A, Estevez Y, Castillo D, Gonzalez G, Villar R, Solano B, Vicente E, Silanes SP, Aldana I, Monge A, Sauvain M, Deharo E. Mem. Inst. Oswaldo Cruz 2008; 103: 778
    • 15e Chacón-Vargas KF, Andrade-Ochoa S, Nogueda-Torres B, Juárez-Ramírez DC, Lara-Ramírez EE, Mondragón-Flores R, Monge A, Rivera G, Sánchez-Torres LE. Parasitol. Res. 2018; 117: 45
    • 15f Estevez Y, Quiliano M, Burguete A, Cabanillas B, Zimic M, Malaga E, Verastegui M, Perez-Silanes S, Aldana I, Monge A, Castillo D, Deharo E. Exp. Parasitol. 2011; 127: 745

      For selected C–H arylation of heterocyclic N-oxides:
    • 16a Shen Y, Chen J, Liu M, Ding J, Gao W, Huang X, Wu H. Chem. Commun. 2014; 50: 4292
    • 16b Duric S, Sypaseuth FD, Hoof S, Svensson E, Tzschucke CC. Chemistry 2013; 19: 17456
    • 16c Campeau LC, Stuart DR, Leclerc JP, Bertrand-Laperle M, Villemure E, Sun HY, Lasserre S, Guimond N, Lecavallier M, Fagnou K. J. Am. Chem. Soc. 2009; 131: 3291
    • 16d Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
    • 16e Shin K, Park S.-W, Chang S. J. Am. Chem. Soc. 2015; 137: 8584
    • 16f Tan Y, Barrios-Landeros F, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 3683
    • 16g Bering L, Antonchick AP. Org. Lett. 2015; 17: 3134
    • 16h Gong X, Song G, Zhang H, Li X. Org. Lett. 2011; 13: 1766

      For selected C–H alkenylation of heterocyclic N-oxides, see:
    • 17a Kanyiva KS, Nakao Y, Hiyama T. Angew. Chem. Int. Ed. 2007; 46: 8872
    • 17b Wu J, Cui X, Chen L, Jiang G, Wu Y. J. Am. Chem. Soc. 2009; 131: 13888
    • 17c Crisenza GE. M, Dauncey EM, Bower JF. Org. Biomol. Chem. 2016; 14: 5820
    • 17d Xia H, Liu Y, Zhao P, Gou S, Wang J. Org. Lett. 2016; 18: 1796
    • 17e Muhammad MH, Chen X.-L, Yu B, Qu L.-B, Zhao Y.-F. Pure Appl. Chem. 2019; 91: 33

      For selected C–H amination of heterocyclic N-oxides, see:
    • 18a Farrell RP, Silva Elipe MV, Bartberger MD, Tedrow JS, Vounatsos F. Org. Lett. 2013; 15: 168
    • 18b Li G, Jia C, Sun K. Org. Lett. 2013; 15: 5198
    • 18c Xiong H, Hoye AT, Fan K.-H, Li X, Clemens J, Horchler CL, Lim NC, Attardo G. Org. Lett. 2015; 17: 3726
    • 18d Zhu C, Yi M, Wei D, Chen X, Wu Y, Cui X. Org. Lett. 2014; 16: 1840
    • 18e Chen X, Li X, Qu Z, Ke D, Qu L, Duan L, Mai W, Yuan J, Chen J, Zhao Y. Adv. Synth. Catal. 2014; 356: 1979
    • 18f Xie L.-Y, Peng S, Jiang L.-L, Peng X, Xia W, Yu X, Wang X.-X, Cao Z, He W.-M. Org. Chem. Front. 2019; 2: 167

      For selected C–H sulfonylation of heterocyclic N-oxides, see:
    • 19a Sun K, Chen X.-L, Li X, Qu L.-B, Bi W.-Z, Chen X, Ma H.-L, Zhang S.-T, Han B.-W, Zhao Y.-F, Li C.-J. Chem. Commun. 2015; 51: 12111
    • 19b Su Y, Zhou X, He C, Zhang W, Ling X, Xiao X. J. Org. Chem. 2016; 81: 4981
    • 19c Wu Z, Song H, Cui X, Pi C, Du W, Wu Y. Org. Lett. 2013; 15: 1270
    • 19d Wang R, Zeng Z, Chen C, Yi N, Jiang J, Cao Z, Deng W, Xiang J. Org. Biomol. Chem. 2016; 14: 5317
    • 19e Du B, Qian P, Wang Y, Mei H, Han J, Pan Y. Org. Lett. 2016; 18: 4144
    • 19f Xie L.-Y, Fang T.-G, Tan J.-X, Zhang B, Cao Z, Yang L.-H, He W.-M. Green Chem. 2019; 21: 3858
    • 19g Li P, Jiang Y, Li H, Dong W, Peng Z, An D. Synth. Commun. 2018; 48: 1909

      For selected C–H alkylation of heterocyclic N-oxides, see:
    • 20a Zhang WM, Dai JJ, Xu J, Xu HJ. J. Org. Chem. 2017; 82: 2059
    • 20b Jo W, Kim J, Choi S, Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690
    • 20c Jha AK, Jain N. Chem. Commun. 2016; 52: 1831
    • 20d Deng G, Ueda K, Yanagisawa S, Itami K, Li CJ. Chemistry 2009; 15: 333
    • 20e Xiao B, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 616
    • 20f Larionov OV, Stephens D, Mfuh A, Chavez G. Org. Lett. 2014; 16: 864
    • 20g Sun W, Xie Z, Liu J, Wang L. Org. Biomol. Chem. 2015; 13: 4596
    • 20h Andersson H, Almqvist F, Olsson R. Org. Lett. 2007; 9: 1335
    • 20i Zhang F, Duan X.-F. Org. Lett. 2011; 13: 6102
    • 20j Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
    • 21a Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 21b Geri JB, Wade Wolfe MM, Szymczak NK. Angew. Chem. Int. Ed. 2018; 57: 1381
    • 22a Mizuta S, Verhoog S, Wang X, Shibata N, Gouverneur V, Meciebielle M. J. Fluorine Chem. 2013; 155: 124
    • 22b Alonso C, Martinez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 22c Wang J, Sun K, Chen X, Chen T, Liu Y, Qu L, Zhao Y, Yu B. Org. Lett. 2019; 21: 1863
    • 22d Jing C, Chen X, Sun K, Yang Y, Chen T, Liu Y, Qu L, Zhao Y, Yu B. Org. Lett. 2019; 21: 486
    • 23a Morstein J, Hou H, Cheng C, Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 8054
    • 23b Jacquet J, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L. Chem. Sci. 2016; 7: 2030
    • 23c Kautzky JA, Wang T, Evans RW, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 6522
    • 23d Kuninobu Y, Nishi M, Kanai M. Org. Biomol. Chem. 2016; 14: 8092
    • 23e Yang H, Wang F, Jiang X, Zhou Y, Xu X, Tang P. Angew. Chem. Int. Ed. 2018; 57: 13266
    • 23f Gao G.-L, Yang C, Xia W. Chem. Commun. 2017; 53: 1041
    • 24a Stephens DE, Chavez G, Valdes M, Dovalina M, Arman HD, Larionov OV. Org. Biomol. Chem. 2014; 12: 6190
    • 24b Fan CB, Song JJ, Qiu GY. S, Liu G, Wu J. Org. Chem. Front. 2014; 1: 924
    • 24c Gao X, Geng Y, Han S, Liang A, Li J, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2018; 59: 1551