Synthesis 2020; 52(01): 60-68
DOI: 10.1055/s-0039-1690725
paper
© Georg Thieme Verlag Stuttgart · New York

A New Synthetic Pathway to Symmetric Bisubstituted Naphthoquinones

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation   Email: vmiguli@mail.ru
› Author Affiliations
Further Information

Publication History

Received: 19 July 2019

Accepted after revision: 02 October 2019

Publication Date:
23 October 2019 (online)


Abstract

straightforward and practical synthesis of 2,3-diiodo-1,4-naphthoquinone is reported. Based on the prepared diiodide, a new synthetic approach to symmetric bisubstituted 1,4-naphthoquinones via double Suzuki–Miyaura reaction at room temperature has been researched and developed. The presented general method combines broad-spectrum applicability, efficiency, and simplicity providing target materials in good to quantitative yields.

Supporting Information

 
  • References

  • 1 Kumagai Y, Shinkai Y, Miura T, Cho AK. Annu. Rev. Pharmacol. Toxicol. 2012; 52: 221
  • 2 Widhalm JR, Rhodes D. Hortic. Res. 2016; 3: 16046
  • 3 Pankewitz F, Hilker M. Biol. Rev. 2008; 83: 209
  • 4 Raspotnig G, Fauler G, Leis M, Leis H.-J. J. Chem. Ecol. 2005; 31: 1353
    • 5a Chowdhury NS, Sohrab MdH, Rana MdS, Hasan CM, Jamshidi S, Rahman KM. J. Nat. Prod. 2017; 80: 1173
    • 5b Tadpetch K, Chukong C, Jeanmard L, Thiraporn A, Rukachaisirikul V, Phongpaichit S, Sakayaroj J. Phytochem. Lett. 2015; 11: 106
  • 6 Halicki PC. B, Ferreira LA, De Moura KC. G, Carneiro PF, Del Rio KP, Carvalho TD. S. C, Pinto MD. C. F. R, da Silva PE. A, Ramos DF. Front. Microbiol. 2018; 9: 673
  • 7 Lanfranchi DA, Cesar-Rodo E, Bertrand B, Huang H.-H, Day L, Johann L, Elhabiri M, Becker K, Williams DL, Davioud-Charvet E. Org. Biomol. Chem. 2012; 10: 6375
    • 8a Pinto AV, de Castro SL. Molecules 2009; 14: 4570
    • 8b Lara LS, Moreira CS, Calvet CM, Lechuga GC, Souza RS, Bourguignon SC, Ferreira VF, Rocha D, Pereira MC. S. Eur. J. Med. Chem. 2018; 144: 572
  • 9 Novais JS, Campos VR, Silva AC. J. A, de Souza MC. B. V, Ferreira VF, Keller VG. L, Ferreira MO, Dias FR. F, Vitorino MI, Sathler PC, Santana MV, Resende JA. L. C, Castro HC, Cunha AC. RSC Adv. 2017; 7: 18311
    • 10a Tandon VK, Singh RV, Yadav DB. Bioorg. Med. Chem. Lett. 2004; 14: 2901
    • 10b Crosby IT, Rose ML, Collis MP, de Bruyn PJ, Keep PL. C, Robertson AD. Aust. J. Chem. 2008; 61: 768
    • 11a Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, da Silva FC, Rozental S, Ferreira VF. An. Acad. Bras. Cienc. 2018; 90: 1187
    • 11b Deniz NG, Ibis C, Gokmen Z, Stasevych M, Novikov V, Komarovska-Porokhnyavets O, Ozyurek M, Guclu K, Karakas D, Ulukaya E. Chem. Pharm. Bull. 2015; 63: 1029
    • 12a Huang L.-J, Chang F.-C, Lee K.-H, Wang J.-P, Teng C.-M, Kuo S.-C. Bioorg. Med. Chem. 1998; 6: 2261
    • 12b Lien J.-C, Huang L.-J, Teng C.-M, Wang J.-P, Kuo S.-C. Chem. Pharm. Bull. 2002; 50: 672
  • 13 Tseng C.-H, Cheng C.-M, Tzeng C.-C, Peng S.-I, Yang C.-L, Chen Y.-L. Bioorg. Med. Chem. 2013; 21: 523
    • 14a Ghosh SK, Ganta A, Spanjaard RA. J. Biomed. Sci. 2018; 25: 12
    • 14b Wellington KW. RSC Adv. 2015; 5: 20309
    • 14c Verma RP. Adv. Anticancer Agents Med. Chem. 2006; 6: 489
    • 15a Ravichandiran P, Subramaniyan SA, Kim S.-Y, Kim J.-S, Park B.-H, Shim KS, Yoo DJ. ChemMedChem 2019; 14: 532
    • 15b Hu H.-Y, Liu Y, Ye M, Xu J.-H. Synlett 2006; 1913
  • 16 Janeczko M, Demchuk OM, Strzelecka D, Kubinski K, Maslyk M. Eur. J. Med. Chem. 2016; 124: 1019
  • 17 Tamayo N, Echavarren AM, Paredes MC. J. Org. Chem. 1991; 56: 6488
  • 18 Yoshida S, Kubo H, Saika T, Katsumura S. Chem. Lett. 1996; 25: 139
  • 19 Stagliano KW, Malinakova HC. Tetrahedron Lett. 1997; 38: 6617
  • 20 Deng X, Liebeskind LS. J. Am. Chem. Soc. 2001; 123: 7703
  • 21 Pagliarani A, Nesci S, Ventrella V. Toxicol. In Vitro 2013; 27: 978
  • 22 Rao ML. N, Giri S. RSC Adv. 2012; 2: 12739
    • 23a Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 23b Maluenda I, Navarro O. Molecules 2015; 20: 7528
  • 24 Shin D.-S, Park M, Ryu J, Hwang I, Seo JK, Seo K, Cho J, Hong SY. J. Mater. Chem. A 2018; 6: 14761
  • 25 Kose M, Sekerci CY, Suzuki K, Yokoyama Y. J. Photochem. Photobiol., A 2011; 219: 58
  • 26 Chiarucci M, Ciogli A, Mancinelli M, Ranieri S, Mazzanti A. Angew. Chem. Int. Ed. 2014; 53: 5405
  • 27 Hassan Z, Ullah I, Ali I, Khera RA, Knepper I, Ali A, Patonay T, Villinger A, Langer P. Tetrahedron 2013; 69: 460
    • 28a Migulin VA, Krayushkin MM, Barachevsky VA, Kobeleva OI, Valova TM, Lyssenko KA. J. Org. Chem. 2012; 77: 332
    • 28b Migulin VA, Krayushkin MM, Barachevsky VA, Kobeleva OI, Novikov VV, Lyssenko KA. Tetrahedron 2015; 71: 584
  • 29 Migulin VA, Lvov AG, Krayushkin MM. Tetrahedron 2017; 73: 4439
  • 30 Titkov VA, Pletnev ID. Patent SU 184271, 1966 . Preparation of DINQ included azeotrope distillation of H2O from the mixture of DCNQ and NaI·2H2O in boiling nitrobenzene, followed by heating at 210 °C for 12 h in the presence of Cu powder.
  • 31 Ke F, Chen X, Li Z, Xiang H, Zhou X. RSC Adv. 2013; 3: 22837 . In this publication, DINQ was converted into 2,3-dihydroxy-1,4-naphthoquinone; however, neither details nor the origin of the starting material have been provided
    • 32a Wolfe JP, Singer RA, Yang BH, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 9550
    • 32b Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 33 Zim D, Buchwald SL. Org. Lett. 2003; 5: 2413
  • 34 Liu L, Zhang Y, Wang Y. J. Org. Chem. 2005; 70: 6122
  • 35 Carrow BP, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2116
  • 36 Yang J, Liu S, Zheng J.-F, Zhou J. Eur. J. Org. Chem. 2012; 6248