Synlett 2019; 30(18): 2073-2076
DOI: 10.1055/s-0039-1690692
letter
© Georg Thieme Verlag Stuttgart · New York

Diene Synthesis by the Reductive Transposition of 1,2-Allenols

Vincent J. Rinaolo
a   Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA   Email: r-thomson@northwestern.edu
,
Emily E. Robinson
a   Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA   Email: r-thomson@northwestern.edu
,
Abdallah B. Diagne
a   Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA   Email: r-thomson@northwestern.edu
,
Scott E. Schaus
b   Center for Molecular Discovery, Department of Chemistry, 590 Commonwealth Avenue, Boston University, Boston, MA 02215, USA
,
a   Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA   Email: r-thomson@northwestern.edu
› Author Affiliations
This work was supported by the National Science Foundation (CHE1361173). V.J.M. is a 2015 Barry M. Goldwater Scholar and gratefully acknowledges support from Northwestern University in the form of an Undergraduate Research Grant. We thank the ARCS Foundation for the Daniel D. and Ada L. Rice Foundation Scholarship to A.B.D.
Further Information

Publication History

Received: 12 August 2019

Accepted after revision: 11 September 2019

Publication Date:
24 September 2019 (online)


Abstract

Monoalkyl diazene species are versatile intermediates that have enabled many useful synthetic transformations in complex chemical environments. Herein we report the reductive transposition of 1,2-allenols for the direct synthesis of dienes through an alkene walk process.

Supporting Information

 
  • References and Notes

    • 1a Sato T, Homma I, Nakamura S. Tetrahedron Lett. 1969; 10: 871
    • 1b Sato T, Homma I. Bull. Chem. Soc. Jpn. 1971; 44: 1885
  • 2 Corey EJ, Cane DE, Libit L. J. Am. Chem Soc. 1971; 93: 7016
    • 3a Hutchins RO, Milewski CA, Maryanoff BE. J. Am. Chem. Soc. 1973; 95: 3662
    • 3b Hutchins RO, Kacher M, Rua L. J. Org. Chem. 1975; 40: 923
  • 4 Taylor EJ, Djerassi C. J. Am. Chem. Soc. 1976; 98: 2275
    • 5a Myers AG, Zheng B. J. Am. Chem. Soc. 1996; 118: 4492
    • 5b Myers AG, Zheng B. Tetrahedron Lett. 1996; 37: 4841
    • 5c Myers AG, Movassaghi M, Zheng B. J. Am. Chem. Soc. 1997; 119: 8572
    • 6a Movassaghi M, Piizzi G, Siegel DS, Piersanti G. Angew. Chem. Int. Ed. 2006; 45: 5859
    • 6b Movassaghi M, Ahmad OK. J. Org. Chem. 2007; 72: 1838
    • 6c Movassaghi M, Ahmad OK. Angew. Chem. Int. Ed. 2008; 47: 8909
    • 6d Siegel DS, Piizzi G, Piersanti G, Movassaghi M. J. Org. Chem. 2009; 74: 9292
  • 7 Liu ZH, Liao PQ, Bi XH. Chem. Eur. J. 2014; 20: 17277

    • For examples, see:
    • 8a Girotra NN, Wendler NL. Tetrahedron Lett. 1982; 23: 5501
    • 8b Corey EJ, Wess G, Xiang YB, Singh AK. J. Am. Chem. Soc. 1987; 109: 4717
    • 8c Corey EJ, Virgil SC. J. Am. Chem. Soc. 1990; 112: 6429
    • 8d Wood JL, Porco JA, Taunton J, Lee AY, Clardy J, Schreiber SL. J. Am. Chem. Soc. 1992; 114: 5898
    • 8e Chu M, Coates RM. J. Org. Chem. 1992; 57: 4590
    • 8f Tanaka T, Maeda K, Mikamiyama H, Funakoshi Y, Uenaka K, Iwata C. Tetrahedron 1996; 52: 4257
    • 8g Corey EJ, Huang AX. J. Am. Chem. Soc. 1999; 121: 710
    • 8h Chai Y, Vicic DA, McIntosh MC. Org. Lett. 2003; 5: 1039
    • 8i Sammis GM, Flamme EM, Xie H, Ho DM, Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 8612
    • 8j Guppi SR, Zhou MQ, O’Doherty GA. Org. Lett. 2006; 8: 293
    • 8k Hutchison JM, Lindsay HA, Dormi SS, Jones GD, Vicic DA, McIntosh MC. Org. Lett. 2006; 8: 3663
    • 8l Qi W, McIntosh MC. Org. Lett. 2008; 10: 357
    • 8m Anada M, Tanaka M, Shimada N, Nambu H, Yamawaki M, Hashimoto S. Tetrahedron 2009; 65: 3069
    • 8n Shan MD, Sharif EU, O’Doherty GA. Angew. Chem. Int. Ed. 2010; 49: 9492
    • 8o Xie H, Sammis GM, Flamme EM, Kraml CM, Sorensen EJ. Chem. Eur. J. 2011; 17: 11131
    • 8p Inuki S, Iwata A, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 2072
    • 8q Iwata A, Inuki S, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 5506
    • 8r Hao HD, Trauner D. J. Am. Chem. Soc. 2017; 139: 4117
    • 8s Shrestha ML, Qi W, McIntosh MC. J. Org. Chem. 2017; 82: 8359
    • 9a Mundal DA, Avetta JrC. T, Thomson RJ. Nat. Chem. 2010; 2: 294
    • 9b Mundal DA, Lutz KE, Thomson RJ. J. Am. Chem. Soc. 2012; 134: 5782
    • 9c Gutierrez O, Strick BF, Thomson RJ, Tantillo DJ. Chem. Sci. 2013; 4: 3997
    • 9d Diagne AB, Li S, Perkowski GA, Mrksich M, Thomson RJ. ACS Comb. Sci. 2015; 17: 658
    • 9e Jiang Y, Diagne AB, Thomson RJ, Schaus SE. J. Am. Chem. Soc. 2017; 139: 1998
    • 9f Jiang Y, Thomson RJ, Schaus SE. Angew. Chem. Int. Ed. 2017; 56: 16631
  • 10 General Procedure Diethyl azodicarboxylate (0.6 mmol, 1.2 equiv) was added dropwise to a solution of IPNBSH (7, 0.6 mmol, 1.2 equiv), Ph3P (0.6 mmol, 1.2 equiv), and allenol 11 (0.5 mmol) at 0 °C in anhydrous THF (5 mL). After 5 min the reaction mixture was allowed to warm to room temperature. Once the allenol was fully consumed as indicated by TLC (ca. 30 min), trifluoroethanol (1.25 mL) and water (1.25 mL) were added, and the resulting solution allowed to stir for ca. 18 h until the Mitsunobu intermediate disappeared by TLC. Once complete, the reaction mixture was partitioned between pentane (35 mL) and water (35 mL). The layers were separated, and the organic layer was washed with water (2 × 35 mL), dried with MgSO4, filtered, and concentrated in vacuo. The crude reaction mixture was purified by column chromatography on silica gel to afford the diene 12.
  • 11 New Compounds Compound 22 (major isomer): IR (film): 2899, 2846, 1451, 998, 900 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.92 (ddd, J = 16.8, 11.5, 10.1 Hz, 1 H), 5.82 (t, J = 11.9 Hz, 1 H), 5.17–5.04 (m, 3 H), 2.01–1.96 (m, 3 H), 1.81 (d, J = 2.9 Hz, 6 H), 1.71 (d, J = 3.3 Hz, 6 H). 13C NMR (126 MHz, CDCl3): δ = 142.7, 134.0, 127.5, 117.5, 43.4, 36.9, 36.8, 28.8. HRMS (EI): m/z calcd for C14H20 [M]+: 188.1565; found: 188.1571. Compound 31 (major isomer): IR (film): 3055, 3005, 2962, 2852, 1628, 1601, 1505, 1449, 1436, 1372, 1270, 1158, 1121 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.83–7.71 (m, 4 H), 7.51 (dd, J = 8.4, 1.8 Hz, 1 H), 7.49–7.41 (m, 2 H), 6.58 (d, J = 12.2 Hz, 1 H), 6.25 (d, J = 12.3 Hz, 1 H), 5.03 (dt, J = 16.2, 0.8 Hz, 2 H), 1.75 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 142.1, 135.6, 133.3, 133.3, 132.5, 129.5, 128.0, 127.9, 127.7, 127.4, 127.2, 126.1, 125.9, 117.3, 22.4. HRMS (EI): m/z calcd for C15H14 [M]+: 194.1096; found: 194.1093.