Synlett 2020; 31(01): 37-40
DOI: 10.1055/s-0039-1690690
cluster – 9th Pacific Symposium on Radical Chemistry
© Georg Thieme Verlag Stuttgart · New York

Divergent Nickel-Catalysed Ring-Opening–Functionalisation of Cyclobutanone Oximes with Organozincs

Lucrezia Angelini
a  School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK   Email: daniele.leonori@manchester.ac.uk
,
Laia Malet Sanz
b  Eli Lilly and Company Limited, Erl Wood Manor, Windelesham, Surrey, GU20 6PH, UK
,
a  School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK   Email: daniele.leonori@manchester.ac.uk
› Author Affiliations

Subject Editor: David Nicewicz and Corey StephensonD.L. thanks EPSRC for a fellowship (EP/P004997/1), and the European Research Council for a research grant (758427).
Further Information

Publication History

Received: 23 August 2019

Accepted after revision: 10 September 2019

Publication Date:
24 September 2019 (online)

Published as part of the Cluster 9th Pacific Symposium on Radical Chemistry

Abstract

The development of a nickel-catalysed strategy for the remote alkylation, arylation, vinylation and alkynylation of nitriles is presented. The methodology uses electron-poor O-Ar cyclic oximes and organozincs as coupling partners. This redox process proceeds through the generation of an iminyl radical and its following ring-opening reaction.

Supporting Information

 
  • References and Notes


    • Reviews:
    • 1a Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
    • 1b Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
    • 1c Morcillo, S. P. Angew. Chem. Int. Ed. 2019, in press; DOI: 10.1002/anie.201905218.
    • 2a Boivin J, Callier-Dublanchet A.-C, Quiclet-Sire B, Schiano A.-M, Zard SZ. Tetrahedron 1995; 51: 6517
    • 2b Boivin J, Fouquet E, Schiano A.-M, Zard SZ. Tetrahedron 1994; 50: 1769

      Selected examples:
    • 3a Zhao J.-F, Gao P, Duan X.-H, Guo L.-N. Adv. Synth. Catal. 2018; 360: 1775
    • 3b Wu J, Zhang J.-Y, Gao P, Xu S.-L, Guo L.-N. J. Org. Chem. 2018; 83: 1046
    • 3c Yu X.-Y, Zhao Q.-Q, Chen J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 15505
    • 3d Yao S, Zhang K, Zhou Q.-Q, Zhao Y, Shi D.-Q, Xiao W.-J. Chem. Commun. 2018; 54: 8096
    • 3e Li L, Chen H, Mei M, Zhou L. Chem. Commun. 2017; 53: 11544
    • 3f Shen X, Zhao J.-J, Yu S. Org. Lett. 2018; 20: 5523
    • 3g Vaillant FL, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem. Sci. 2018; 9: 5883
    • 3h Yang H.-B, Selander N. Chem. Eur. J. 2017; 23: 1779
    • 3i Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo LN. Chem. Commun. 2018; 54: 10738
    • 3j Zhang J.-J, Duan X.-H, Wu Y, Yang J.-C, Guo L.-N. Chem. Sci. 2019; 10: 161
    • 3k Ai W, Liu Y, Wang Q, Lu Z, Liu Q. Org. Lett. 2018; 20: 409
    • 3l Ding D, Whang C. ACS Catal. 2018; 8: 11324
  • 4 Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
  • 5 Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 744
  • 6 Dauncey EM, Dighe SU, Douglas JJ, Leonori D. Chem. Sci. 2019; 10: 7728

    • Reviews:
    • 7a Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 7b Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 7c Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2017; 45: 62
    • 7d Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
  • 8 Angelini L, Davies J, Simonetti M, Malet-Sanz L, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2019; 58: 5003
  • 9 Phapale VB, Buñuel E, García-Iglesias M, Cárdenas DJ. Angew. Chem. Int. Ed. 2007; 127: 4594
    • 10a Jones GD, McFarland C, Anderson TJ, Vicic DA. Chem. Commun. 2005; 42: 4211
    • 10b Anderson TJ, Jones GD, Vicic DA. J. Am. Chem. Soc. 2004; 126: 8100
    • 10c Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
    • 11a Narasaka K, Kitamura M. Eur. J. Org. Chem. 2005; 4505
    • 11b Davies J, Booth SG, Essafi S, Dryfe RW. A, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
  • 12 Products 2, 5–20; General Procedure An oven-dried microwave vial equipped with a stirring bar was charged with the aryl oxime (0.05 mmol, 1.0 equiv) and dtbpy·NiBr2 (20 mol%). The vial was sealed, evacuated and refilled with N2 (3×). DMF was added followed by the organozinc (0.1 mmol, 1.0 equiv) as a solution in THF (DMF–THF 1:1, 0.05 M). The reaction was stirred at room temperature for 16 h and then it was filtered through a silica plug by eluting with EtOAc. The solution was washed with H2O (3×), and brine (1×), dried (MgSO4), filtered and evaporated. Purification by column chromatography on silica gel gave the corresponding product. 7,11-Dimethyldodecanenitrile (5) Following the general procedure, 1 gave 5 (13 mg, 61%) as a colorless oil; Rf 0.90 (PE–EtOAc, 8:2). 1H NMR (500 MHz, CDCl3): δ = 2.33 (t, J = 7.1 Hz, 2 H), 1.66 (quin, J = 7.3 Hz, 2 H), 1.59–1.48 (m, 1 H), 1.47–1.33 (m, 4 H), 1.33–1.18 (m, 5 H), 1.17–0.99 (m, 4 H), 0.92–0.75 (m, 9 H). 13C NMR (126 MHz, CDCl3): δ = 120.0, 39.5, 37.4, 36.8, 32.8, 29.2, 28.1, 26.4, 25.6, 24.9, 22.9, 22.8, 19.8, 17.3. HRMS (ASAP): m/z [M + H]+ calcd for C14H28N: 210.2216; found: 210.2212. tert-Butyl-4-(cyanomethyl)-4-(prop-2-yn-1-yl)piperidine-1-carboxylate (20) Following the general procedure, 1 gave 20 (16 mg, 54%) as a colorless oil; Rf 0.50 (PE–EtOAc, 7:3). 1H NMR (500 MHz, CDCl3): δ = 3.57–3.44 (m, 2 H), 3.37–3.25 (m, 2 H), 2.53 (s, 2 H), 2.41 (d, J = 2.7 Hz, 2 H), 2.10 (t, J = 2.6 Hz, 1 H), 1.71–1.59 (m, 4 H), 1.46 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 154.8, 117.3, 80.1, 79.1, 72.6, 34.8, 33.5, 31.1, 28.6, 26.6, 21.2. HRMS (ASAP): m/z [M + H]+ calcd for C15H23N2O2: 263.1754; found: 263.1749.
  • 13 Yang H.-B, Pathipati SR, Selander N. ACS Catal. 2017; 7: 8441