Synthesis 2019; 51(24): 4625-4634
DOI: 10.1055/s-0039-1690681
paper
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Promoted Oxidative Cyclization To Give 1,2,4-Trisubstituted Carbazole Scaffolds

Milena Szewczyk
,
Małgorzata Ryczkowska
,
Sławomir Makowiec
Further Information

Publication History

Received: 01 July 2019

Accepted after revision: 26 August 2019

Publication Date:
13 September 2019 (online)

Abstract

Herein, we describe the synthesis of a 1,2,4-trisubstituted carbazole core from 5-(1H-indol-3-yl)-3-oxopentanoic acid esters or amides. For oxidative cyclization, we tested two different approaches. First, we used manganese triacetate as a conventional moderate oxidizer to ensure the radical course of the reaction. Second, we examined the use of a more complex oxidizing agent I2/Me(OTf)3. In both cases, formation of a fused-ring carbazole system with a 2-hydroxyl and 1-carboxylic substituent were observed. In connection with the formation of an unexpected reaction intermediate, mechanistic aspects of the process were discussed.

Supporting Information

 
  • References

    • 1a Knolker HJ, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 1b Shmidt AW, Reddy KR, Knolker HJ. Chem. Rev. 2012; 112: 3193
  • 2 Knolker HJ. Top. Curr. Chem. 2005; 244: 115
  • 3 Chakraborty DP, Chowdhury BK. J. Org. Chem. 1968; 33: 1265
  • 4 Boggs SD, Cobb JD, Gudmundsson KS, Jones LA, Matsuoka RT, Millar A, Patterson DE, Samano V, Trone MD, Xie S, Zhou X. Org. Process Res. Dev. 2007; 11: 539
  • 5 Yan H, Mizutani TC, Nomura N, Takakura T, Kitamura Y, Miura H, Nishizawa M, Tatsumi M, Yamamoto N, Sugiura W. Antiviral Chem. Chemother. 2005; 16: 363
    • 6a Ha JD, Kang SK, Cheon HG, Choi JK. Bull. Korean Chem. Soc. 2004; 25: 1784
    • 6b Romeo G, Materia L, Pittala V, Modica M, Salerno L, Siracusa M, Russoa F, Minneman KP. Bioorg. Med. Chem. 2006; 14: 5211
    • 6c Brütting C, Hesse R, Jäger A, Kataeva O, Schmidt AW, Knölker H.-J. Chem. Eur. J. 2016; 22: 16897
  • 7 Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 661
  • 9 Bod P, Harsányi K, Trischler F, Fekecs E, Csehi A, Hegedis E, Donàt M, Komlósi GS, Sziki EH. US 5478949, 1995
    • 10a Rodriguez JG, Temprano F, Esteban-Calderon C, Martinez-Ripoll MJ. J. Chem. Soc., Perkin Trans. 1 1989; 2117
    • 10b Xu DQ, Wu J, Luo SP, Zhang JX, Wu JY, Du XH, Xu ZY. Green Chem. 2009; 11: 1239
    • 10c Candia M, Zaetta G, Denora N, Tricarico D, Majellaro M, Cellamare S, Altomare CD. Eur. J. Med. Chem. 2017; 125: 288
    • 10d Kudzma LV. Synthesis 2003; 1661
    • 10e Hillier CM, Marcoux JF, Zhao D, Grabowski EJ. J, McKeown AE, Tillyer RD. J. Org. Chem. 2005; 70: 8385
    • 11a Yun XL, Bi WY, Huang JH, Liu Y, Zhang-Negrerie DY, Du F, Zhao K. Tetrahedron Lett. 2012; 53: 5076
    • 11b Masaguer CF, Ravina E, Fontenla JA, Brea J, Tristan H, Loza MI. Eur. J. Med. Chem. 2000; 35: 83
    • 11c Janreddy D, Kavala V, Bosco JW. J, Kuo C.-W, Yao C.-F. Eur. J. Org. Chem. 2011; 2360
    • 11d Sørensen US, Pombo-Villar E. Helv. Chim. Acta 2004; 87: 82
    • 12a Knölker H.-J, O’Sullivan N. Tetrahedron 1994; 50: 10894
    • 12b Krahl MP, Jäger A, Krausea T, Knölker H.-J. Org. Biomol. Chem. 2006; 4: 3215
    • 12c Bi W, Yun X, Fan Y, Qi X, Du Y, Huang J. Synlett 2010; 2899
    • 12d Aragon PJ, Yapi AD, Pinguet F, Chezal JM, Teulade JC, Blache Y. Chem. Pharm. Bull. 2007; 55: 1349
    • 12e Wurtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 12f Knolker HJ. Chem. Lett. 2009; 38: 8
    • 12g Ibrahim-Ouali M, Missoum A, Sinibaldi M.-E, Troin Y. Synth. Commun. 1996; 26: 657
    • 12h Bautista R, Montoya PA, Rebollar A, Burgueño E, Tamariz J. Molecules 2013; 18: 10334
    • 12i Hesse R, Jäger A, Schmidt AW, Knölker H.-J. Org. Biomol. Chem. 2014; 12: 3866
    • 13a Chuang CP, Wang SF. Tetrahedron Lett. 1994; 35: 1283
    • 13b Tsai AI, Lin CH, Chuang CP. Heterocycles 2005; 65: 2381
    • 14a Magolan J, Carson CA, Kerr MA. Org. Lett. 2008; 10: 1437
    • 14b Magolan J, Kerr MA. Org. Lett. 2006; 8: 4561
    • 15a Yamaguchi E, Sudo Y, Tada N, Itoha A. Adv. Synth. Catal. 2016; 358: 3191
    • 15b Oisaki K, Abea J, Kanai M. Org. Biomol. Chem. 2013; 11: 4569
  • 16 Tucker JW, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Org. Lett. 2010; 12: 368
  • 17 Chen P, Cao L, Tian W, Wang X, Li C. Chem. Commun. 2010; 46: 8436
    • 18a Jung ME, Slowinski F. Tetrahedron Lett. 2001; 42: 6835
    • 18b Cuevas-Yañez E, Muchowski JM, Cruz-Almanza R. Tetrahedron 2004; 60: 1505
  • 19 Patil DV, Cavitt MA, Grzybowski P, France S. Chem. Commun. 2011; 47: 10278
    • 20a Janikowska K, Makowiec S. Synth. Commun. 2012; 42: 975
    • 20b Lee HK, Lee JP, Lee GH, Pak CS. Synlett 1996; 1209
  • 21 Oikawa Y, Hirasawa H, Yonemitsu O. Tetrahedron Lett. 1978; 1759
    • 22a D’Annibale A, Pesce A, Resta S, Trogolo C. Tetrahedron 1997; 53: 13129
    • 22b Punda P, Ponikiewski Ł, Makowiec S. Helv. Chim. Acta 2013; 96: 2081
    • 22c Attenni B, Cerreti A, D’Annibale A, Resta S, Trogolo C. Tetrahedron 1998; 54: 12029
    • 22d Citterio A, Sebastiano R, Carvalay M. J. Org. Chem. 1991; 56: 5335
    • 22e D’Annibale A, Resta S, Trogolo C. Tetrahedron Lett. 1995; 36: 9039
    • 22f Oumar-Mahmat H, Moustrou C, Surzur JM, Bertrand MP. J. Org. Chem. 1989; 54: 5684
    • 22g Snider BB. Tetrahedron 2009; 65: 10738
  • 23 Baciocchi E, Muraglia E, Sleiter G. J. Org. Chem. 1992; 57: 6817
  • 24 Sreedhar B, Reddy PS, Madhavi M. Synth. Commun. 2007; 37: 4149
  • 25 Yang D, Gao Q, Lee CS, Cheung KK. Org. Lett. 2002; 4: 3271
    • 26a Bergens SH, Bosnich B. J. Am. Chem. Soc. 1991; 113: 958
    • 26b Garcia-Alvarez J, Garcia-Garrido SE, Crochet P, Caderino V. Curr. Top. Catal. 2012; 35: 10
  • 27 Adamo MF. A, Konda VR. Org. Lett. 2007; 9: 303
  • 28 Raillard SP, Chen W, Sullivan E, Bajjalieh W, Bhandari A, Baer TA. J. Comb. Chem. 2002; 4: 470
  • 29 Takeda T, Harada S, Nishida A. Org. Lett. 2015; 17: 5184