RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2019; 51(22): 4296-4310
DOI: 10.1055/s-0039-1690619
DOI: 10.1055/s-0039-1690619
paper
Accessing Tricyclic Imines Comprising a 2-Azabicyclo[2.2.2]octane Scaffold by Intramolecular Hetero-Diels–Alder Reaction of 4-Alkenyl-Substituted N-Silyl-1,4-dihydropyridines
Weitere Informationen
Publikationsverlauf
Received: 04. Juli 2019
Accepted after revision: 07. August 2019
Publikationsdatum:
05. September 2019 (online)

Abstract
Tricyclic imines inheriting a 2-azabicyclo[2.2.2]octane (isoquinuclidine) scaffold were provided with high regioselectivity in moderate to very good yields by a smooth, broadly applicable intramolecular hetero-Diels–Alder reaction of various 4-ω-alkenyl-substituted 1,4-dihydropyridines (DHPs) under trifluoroacetic acid catalysis. The required 4,4-disubstituted 1,4-DHPs were obtained by introduction of ω-alkenyl moieties of varying chain length via diorganomagnesium reagents into the 4-position of diversely 4-substituted pyridines after prior N-activation with triisopropylsilyltriflate.
Key words
intramolecular hetero-Diels–Alder reaction - 2-azabicyclo[2.2.2]octane - polycycles - 1,4-dihydropyridines - diorganomagnesium reagents - heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690619.
- Supporting Information
-
References
- 1a Sharma VK, Singh SK. RSC Adv. 2017; 7: 2682
- 1b Silva A, Silva E, Varandas P. Synthesis 2013; 45: 3053
- 1c Lavilla R. J. Chem. Soc., Perkin Trans. 1 2002; 1141
- 1d Belenky P, Bogan KL, Brenner C. Trends Biochem. Sci. 2007; 32: 12
- 1e World Health Organization (WHO) Model List of Essential Medicines 2017; 1-58
- 2a Eisner U, Kuthan J. Chem. Rev. 1972; 72: 1
- 2b Stout DM, Meyers AI. Chem. Rev. 1982; 82: 223
- 2c Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
- 3a Jochmann P, Dols TS, Spaniol TP, Perrin L, Maron L, Okuda J. Angew. Chem. Int. Ed. 2010; 49: 7795
- 3b Lichtenberg C, Spaniol TP, Perrin L, Maron L, Okuda J. Chem. Eur. J. 2012; 18: 6448
- 4a Yamaguchi R, Moriyasu M, Yoshioka M, Kawanisi M. J. Org. Chem. 1985; 50: 287
- 4b Corey EJ, Tian Y. Org. Lett. 2005; 7: 5535
- 5a Charette AB, Mathieu S, Martel J. Org. Lett. 2005; 7: 5401
- 5b Schultz AG, Flood L, Springer JP. J. Org. Chem. 1986; 51: 838
- 6 Bennasar M.-L, Juan C, Bosch J. Tetrahedron Lett. 2001; 42: 585
- 7a Yamada S, Inoue M. Org. Lett. 2007; 9: 1477
- 7b Courtois G, Al-Arnaout A, Miginiac L. Tetrahedron Lett. 1985; 26: 1027
- 8a Sandoval JJ, Palma P, Alvarez E, Rodriguez-Delgado A, Campora J. Chem. Commun. 2013; 49: 6791
- 8b Cámpora J, Pérez CM, Rodríguez-Delgado A, Naz AM, Palma P, Álvarez E. Organometallics 2007; 26: 1104
- 8c Sandoval JJ, Melero C, Palma P, Álvarez E, Rodríguez-Delgado A, Cámpora J. Organometallics 2016; 35: 3336
- 9a Krow GR, Lee YB, Raghavachari R, Szczepanski SW, Alston PV. Tetrahedron 1991; 47: 8499
- 9b Comins DL, Mantlo NB. Tetrahedron Lett. 1987; 28: 759
- 9c Rudler H, Denise B, Xu Y, Parlier A, Vaissermann J. Eur. J. Org. Chem. 2005; 3724
- 10a Schmaunz CE, Mayer P, Wanner KT. Synthesis 2014; 46: 1630
- 10b Bräckow J, Wanner KT. Tetrahedron 2006; 62: 2395
- 11a Satoh N, Akiba T, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2007; 46: 5734
- 11b Khan MO. F, Levi MS, Clark CR, Ablorderrey SY, Law S.-J, Wilson NH, Borne RF. Stud. Nat. Prod. Chem. 2008; 34: 753
- 12a Hartman GD, Halczenko W, Philipps BT. J. Org. Chem. 1985; 50: 2427
- 12b Hartman GD, Halczenko W, Philipps BT. J. Org. Chem. 1986; 51: 142
- 12c Hartman GD, Philipps BT, Halczenko W. J. Org. Chem. 1987; 52: 1136
- 12d Hartman GD, Philipps BT, Halczenko W, Pitzenberger SM. J. Org. Chem. 1989; 54: 4137
- 13a Rappenglück S, Niessen K, Seeger T, Worek F, Thiermann H, Wanner K. Synthesis 2017; 49: 4055
- 13b Sperger CA, Wanner KT. Tetrahedron 2009; 65: 5824
- 13c Schmaunz C. Dissertation. Ludwig-Maximilians Universität München; Germany: 2012
- 14 Claridge TD. W. High-Resolution NMR Techniques in Organic Chemistry, 2 ed., Vol. 27. Elsevier; Amsterdam: 2009
- 15 Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
- 16 Perrin DD, Armarego WL. F. Purification of Laboratory Chemicals . Pergamon Press; New York: 1988
- 17 Hünig S, Kreitmeier P, Märkl G, Sauer J. Arbeitsmethoden in der Organischen Chemie . Lehmanns; Berlin: 2006
- 18 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
- 19 Schmaunz C, Pabel J, Wanner KT. Synthesis 2010; 13: 2147
- 20 Yong KH, Taylor NJ, Chong JM. Org. Lett. 2002; 4: 3553