Synthesis 2019; 51(22): 4271-4278
DOI: 10.1055/s-0039-1690612
paper
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed [2+2+2] Bis-Homo-Diels–Alder Cycloadditions of 1,5-Cyclooctadiene with Alkynyl Phosphonates

Dina Petko
,
Austin Pounder
,
William Tam
Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada   Email: wtam@uoguelph.ca
› Author Affiliations
This work was supported by the Natural Sciences and Engineering Council of Canada (NSERC).
Further Information

Publication History

Received: 16 July 2019

Accepted after revision: 31 July 2019

Publication Date:
21 August 2019 (eFirst)

Abstract

The ruthenium-catalyzed [2+2+2] bis-homo-Diels–Alder cycloaddition between 1,5-cyclooctadiene and alkynyl phosphonates was investigated. Various alkynyl phosphonate moieties were found to be compatible with the cycloaddition to give the tricyclo[4.2.2.02,5]dec-7-ene tricyclic compounds in yields of 46–97%.

Supporting Information

 
  • References

  • 1 Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 2a Allen A, Villeneuve K, Cockburn N, Fatila E, Riddell N, Tam W. Eur. J. Org. Chem. 2008; 4178
    • 2b Villeneuve K, Riddell N, Tam W. Tetrahedron 2006; 62: 3823
    • 2c Shibata T, Takami K, Kawachi A. Org. Lett. 2006; 8: 1343
    • 2d Villeneuve K, Tam W. Organometallics 2006; 25: 843
    • 2e Villeneuve K, Tam W. Angew. Chem. Int. Ed. 2004; 43: 610
    • 2f Jordan RW, Tam W. Org. Lett. 2001; 3: 2367
    • 2g Mitsudo T, Naruse H, Kondo T, Ozaki Y, Watanabe Y. Angew. Chem. Int. Ed. 1994; 33: 580
    • 2h Mitsudo T, Hori Y, Watanabe Y. J. Organomet. Chem. 1987; 334: 157
    • 2i Schrauzer GN, Glockner P. Chem. Ber. 1964; 97: 2451
    • 3a Trost BM. Angew. Chem., Int. Ed. Engl. 1986; 25: 1
    • 3b Trost BM, Chan DM. T. J. Am. Chem. Soc. 1979; 101: 6429
    • 3c Trost BM, Chan DM. T. J. Am. Chem. Soc. 1983; 105: 2326
    • 4a Hilt G, Lüers S, Harms K. J. Org. Chem. 2004; 69: 624
    • 4b Hilt G, Smolko KI. Angew. Chem. Int. Ed. 2003; 42: 2795
    • 4c Carmona D, Lamata MP, Oro LA. Coord. Chem. Rev. 2000; 200: 717
    • 4d Murakami M, Ubukata M, Itami K, Ito Y. Angew. Chem. Int. Ed. 1998; 37: 2248
    • 4e O’Mahoney DJ. R, Belanger DB, Livinghouse T. Synlett 1998; 443
    • 4f Jolly RS, Luedtke G, Sheehan D, Livinghouse T. J. Am. Chem. Soc. 1990; 112: 4965
    • 4g Wender PA, Jenkins TE. J. Am. Chem. Soc. 1989; 111: 6432
    • 5a Tenaglia A, Gaillard S. Org. Lett. 2007; 9: 3607
    • 5b Lautens M, Tam W, Lautens JC, Edwards LG, Crudden CM, Smith AC. J. Am. Chem. Soc. 1995; 117: 6863
    • 5c Lautens M, Edwards LG, Tam W, Lough AJ. J. Am. Chem. Soc. 1995; 117: 10276
    • 5d Lautens M, Tam W, Sood C. J. Org. Chem. 1993; 58: 4513
    • 5e Lautens M, Lautens JC, Smith AC. J. Am. Chem. Soc. 1990; 112: 5627
    • 5f Lautens M, Crudden CM. Organometallics 1989; 8: 2733
    • 5g Lyons JE, Myers HK, Schneider A. J. Chem. Soc., Chem. Commun. 1978; 636
  • 6 Petko D, Stratton M, Tam W. Can. J. Chem. 2018; 96: 1115
  • 7 Trost BM, Imi K, Indolese AF. J. Am. Chem. Soc. 1993; 115: 8831
  • 8 Alvarez P, Gimeno J, Lastra E, García-Granda S, Van der Maelen JF, Bassetti M. Organometallics 2001; 20: 3762
  • 9 Hasinoff BB, Creighton AM, Kozlowska H, Thampatty P, Allan WP, Yalowich JC. Mol. Pharmacol. 1997; 52: 839
  • 10 Leverrier A, Awang K, Guéritte F, Litaudon M. Phytochemistry 2011; 72: 1443
  • 11 Cockburn N, Karimi E, Tam W. J. Org. Chem. 2009; 74: 5762
  • 12 Kettles TJ, Cockburn N, Tam W. J. Org. Chem. 2011; 76: 6951
  • 13 Chrobak E, Bebenek E, Kadela-Tomanek M, Latocha M, Jelsch C, Wenger E, Boryczka S. Molecules 2016; 21: 1123
  • 14 Smith PW, Chamiec AJ, Chung G, Cobley KN, Duncan K, Howes PD, Whittington AR, Wood MR. J. Antibiot. (Tokyo) 1995; 48: 73
  • 15 Holstein SA, Cermak DM, Wiemer DF, Lewis K, Hohl RJ. Bioorg. Med. Chem. 1998; 6: 687
  • 16 Ouahrouch A, Taourirte M, Schols D, Snoeck R, Andrei G, Engels JW, Lazrek HB. Arch. Pharm. (Weinheim) 2016; 349: 30
  • 17 East JE, Carter KM, Kennedy PC, Schulte NA, Toews ML, Lynch KR, Macdonald TL. Med. Chem. Commun. 2011; 2: 325
  • 18 Prakash TP, Lima WF, Murray HM, Li W, Kinberger GA, Chappell E, Gaus H, Seth PP, Bhat B, Crooke ST, Swayze E. Nucleic Acid Res. 2015; 43: 2993
  • 19 Chemagin AV, Yashin NV, Grishin YK, Kuznetsova TS, Zefirova NS. Synthesis 2010; 259
  • 20 Mollat du Jourdin X, Noshi M, Fuchs PL. Org. Lett. 2009; 11: 543
  • 21 Benmeddah A, Villemin D, Mostefa-Kara B, Bar N, Legay R. Can. J. Chem. 2017; 95: 871
  • 22 Hiney RM, Higham LJ, Mueller-Bunz H, Gilheany DG. Angew. Chem. Int. Ed. 2006; 45: 7248
  • 23 Moglie Y, Mascaro E, Gutierrez V, Alonso F, Radivoy G. J. Org. Chem. 2016; 81: 1813
  • 24 Qu Z, Chen X, Yuan J, Qu L, Li X, Wang F, Ding X, Zhao Y. Can. J. Chem. 2012; 90: 747
  • 25 Gao Y, Wang G, Chen L, Xu P, Zhao Y, Zhou Y, Ha L.-B. J. Am. Chem. Soc. 2009; 131: 7956