Synlett 2019; 30(17): 1966-1970
DOI: 10.1055/s-0039-1690297
cluster
© Georg Thieme Verlag Stuttgart · New York

Iodonium-Catalyzed Carbonyl–Olefin Metathesis Reactions

Giulia Oss
,
Thanh Vinh Nguyen
Australian Research Council (Grant No. FT180100260).
Further Information

Publication History

Received: 31 August 2019

Accepted after revision: 27 September 2019

Publication Date:
01 October 2019 (online)


Published as part of the Cluster Metathesis beyond Olefins

This manuscript is dedicated to the memory of the late Professor Dieter Enders, RWTH Aachen, for his great contributions to organic chemistry and academic mentoring.

Abstract

The carbonyl–olefin metathesis reaction has become increasingly important in organic synthesis due to its versatility in functional group interconversion chemistry. Recent developments in the field have identified a number of transition-metal and organic Lewis acids as effective catalysts for this reaction. Herein, we report the use of simple organic compounds such as N-iodosuccinimide or iodine monochloride to catalyze the carbonyl–olefin metathesis process under mild reaction conditions. This work broadens the scope of this chemical transformation to include iodonium sources as simple and practical catalysts.

Supporting Information

 
  • References and Notes

    • 1a Lee A.-L. Angew. Chem. Int. Ed. 2013; 52: 4524
    • 1b Hennessy ET, Jacobsen EN. Nat. Chem. 2016; 8: 741
    • 1c Saá C. Angew. Chem. Int. Ed. 2016; 55: 10960
  • 2 Ludwig JR, Schindler CS. Synlett 2017; 28: 1501
    • 3a Fu GC, Grubbs RH. J. Am. Chem. Soc. 1993; 115: 3800
    • 3b Jackson AC, Goldman BE, Snider BB. J. Org. Chem. 1984; 49: 3988
    • 3c Khripach VA, Zhabinskii VN, Kuchto AI, Zhiburtovich YY, Gromak VV, Groen MB, van der Louw J, de Groot A. Tetrahedron Lett. 2006; 47: 6715
    • 3d Schopov I, Jossifov C. Makromol. Chem., Rapid Commun. 1983; 4: 659
    • 3e Soicke A, Slavov N, Neudörfl J.-M, Schmalz H.-G. Synlett 2011; 2487
    • 3f van Schaik H.-P, Vijn R.-J, Bickelhaupt F. Angew. Chem., Int. Ed. Engl. 1994; 33: 1611
    • 3g Stille JR, Grubbs RH. J. Am. Chem. Soc. 1986; 108: 855
    • 3h Stille JR, Santarsiero BD, Grubbs RH. J. Org. Chem. 1990; 55: 843
    • 3i Nicolaou KC, Postema MH. D, Claiborne CF. J. Am. Chem. Soc. 1996; 118: 1565
    • 3j Rainier JD, Allwein SP, Cox JM. J. Org. Chem. 2001; 66: 1380
    • 3k Majumder U, Rainier JD. Tetrahedron Lett. 2005; 46: 7209
    • 3l Iyer K, Rainier JD. J. Am. Chem. Soc. 2007; 129: 12604
    • 3m Heller ST, Kiho T, Narayan AR. H, Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 11129
    • 3n Hong B, Li H, Wu J, Zhang J, Lei X. Angew. Chem. Int. Ed. 2015; 54: 1011
    • 4a Griffith AK, Vanos CM, Lambert TH. J. Am. Chem. Soc. 2012; 134: 18581
    • 4b Hong X, Liang Y, Griffith AK, Lambert TH, Houk KN. Chem. Sci. 2014; 5: 471
    • 4c Lambert T. H.; Synlett; 2019, 30: in press; DOI: 10.1055/s-0039-1689924.
    • 5a Veluru Ramesh N, Bah J, Franzén J. Eur. J. Org. Chem. 2015; 1834
    • 5b Ni S, Franzén J. Chem. Commun. 2018; 54: 12982
    • 6a Ludwig JR, Zimmerman PM, Gianino JB, Schindler CS. Nature 2016; 533: 374
    • 6b Ludwig JR, Phan S, McAtee CC, Zimmerman PM, Devery JJ, Schindler CS. J. Am. Chem. Soc. 2017; 139: 10832
    • 6c McAtee CC, Riehl PS, Schindler CS. J. Am. Chem. Soc. 2017; 139: 2960
    • 6d Groso EJ, Golonka AN, Harding RA, Alexander BW, Sodano TM, Schindler CS. ACS Catal. 2018; 8: 2006
    • 6e Albright H, Vonesh HL, Becker MR, Alexander BW, Ludwig JR, Wiscons RA, Schindler CS. Org. Lett. 2018; 20: 4954
    • 6f Ludwig JR, Watson RB, Nasrallah DJ, Gianino JB, Zimmerman PM, Wiscons RA, Schindler CS. Science 2018; 361: 1363
  • 7 Ma L, Li W, Xi H, Bai X, Ma E, Yan X, Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410
  • 8 Catti L, Tiefenbacher K. Angew. Chem. Int. Ed. 2018; 57: 14589
  • 9 Tran UP. N, Oss G, Pace DP, Ho J, Nguyen TV. Chem. Sci. 2018; 9: 5145
  • 10 Tran UP. N, Oss G, Breugst M, Detmar E, Pace DP, Liyanto K, Nguyen TV. ACS Catal. 2019; 9: 912
    • 11a Breugst M, Detmar E, von der Heiden D. ACS Catal. 2016; 6: 3203
    • 11b Breugst M, von der Heiden D. Chem. Eur. J. 2018; 24: 9187
  • 12 See the Supporting Information for more details.
    • 13a Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
    • 13b Jungbauer SH, Walter SM, Schindler S, Rout L, Kniep F, Huber SM. Chem. Commun. 2014; 50: 6281
    • 13c Gliese J.-P, Jungbauer SH, Huber SM. Chem. Commun. 2017; 53: 12052
    • 13d Dreger A, Engelage E, Mallick B, Beer PD, Huber SM. Chem. Commun. 2018; 54: 4013
    • 13e Schulz N, Sokkar P, Engelage E, Schindler S, Erdelyi M, Sanchez-Garcia E, Huber SM. Chem. Eur. J. 2018; 24: 3464
    • 13f Stoesser J, Rojas G, Bulfield D, Hidalgo PI, Pasán J, Ruiz-Pérez C, Jiménez CA, Huber SM. New J. Chem. 2018; 42: 10476
    • 13g von der Heiden D, Detmar E, Kuchta R, Breugst M. Synlett 2018; 29: 1307
  • 14 These two catalysts did not seem to promote the intermolecular COM reaction as preliminary reactions gave unsatisfactory outcomes.
  • 15 General Procedure A A 4 mL vial was charged with NIS (10 mol%) and a stirring bar. Starting material 1 was added to the vial under ambient atmosphere, along with three drops of DCE, added to help with the stirring of reaction mixture. The vial was closed by a cap, and the mixture was stirred for 24 h at room temperature, unless otherwise specified. Upon completion (as determined by TLC analysis), the crude mixture was directly purified by flash column chromatography, to give the metathesis products. General Procedure B A 4 mL vial was charged with ICl (10 mol%, as a stock solution in DCE) and a stirring bar. Starting material 1 was added to the vial under nitrogen atmosphere. The vial was kept under nitrogen, and the mixture was stirred for 24 h at room temperature, unless otherwise specified. Upon completion (as determined by TLC analysis), the crude mixture was directly purified by flash column chromatography, to give the metathesis products. 2-Methyl-3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2a) 1H NMR (300 MHz, CDCl3): δ = 7.79 (d, J = 8.3 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.27–7.06 (m, 4 H), 5.80 (q, J = 2.0 Hz, 1 H), 5.02 (ddddd, J = 9.0, 6.2, 4.1, 3.1, 1.7 Hz, 1 H), 4.30 (q, J = 2.5 Hz, 2 H), 2.38 (d, J = 16.9 Hz, 6 H), 1.50 (d, J = 6.4 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 143.4, 143.2, 138.1, 135.1, 130.1, 129.8, 129.4, 127.3, 126.3, 117.9, 63.0, 54.8, 22.1, 21.5, 21.2 ppm. 3-(p-Tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2b) 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.2 Hz, 2H), 7.35–7.26 (m, 7 H), 5.83–5.81 (m, 1 H), 5.03–5.0 (m, 1 H), 4.30–4.28 (m, 2 H), 2.40 (s, 3 H), 1.48 (d, J = 6.0 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 143.5, 143.4, 135.1, 133.0, 129.8, 128.7, 128.2, 127.3, 126.3, 118.8, 62.9, 54.8, 22.1, 21.5 ppm. Butyl 2-Phenylcyclopent-2-ene-1-carboxylate (2g) 1H NMR (400 MHz, CDCl3): δ = 7.56–7.41 (m, 2 H), 7.41–7.11 (m, 3 H), 6.35 (td, J = 2.6, 1.6 Hz, 1 H), 4.13–3.90 (m, 3 H), 2.75 (dddd, J = 17.3, 8.9, 4.6, 2.6 Hz, 1 H), 2.68–2.53 (m, 1 H), 2.48–2.14 (m, 1 H), 1.63–1.42 (m, 2 H), 1.37–1.19 (m, 2 H), 0.87 (t, J = 7.3 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 175.3, 141.2, 135.5, 130.0, 128.3, 127.2, 125.8, 64.4, 51.3, 32.5, 30.6, 29.3, 19.0, 13.6 ppm. IR (neat): 3055, 2960, 1726, 1457, 1383, 1330 cm–1. HRMS: m/z calcd for [C16H20O2Na]+: 267.1361; found: 267.1356.