Synthesis 2020; 52(02): 320-326
DOI: 10.1055/s-0039-1690295
paper
© Georg Thieme Verlag Stuttgart · New York

Nucleophilic Addition of 1,1′-Bis(hydroxymethyl)ferrocene to Alkynes: Synthesis of Ferrocene Diethenyl Ethers

Ludmila A. Oparina
,
Nikita A. Kolyvanov
,
Olga A. Tarasova
,
Alexander I. Albanov
,
Anatolii P. Tantsyrev
,
Boris A. Trofimov
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
› Author Affiliations
This work has been approved by plans for research projects at the IPC Russian Academy of Sciences State Registration No. AAAA-A16-116112510005-7.
Further Information

Publication History

Received: 03 September 2019

Accepted after revision: 25 September 2019

Publication Date:
09 October 2019 (online)


Abstract

Chemoselective and atom-economical methods for the synthesis of ferrocene diethenyl ethers have been developed via direct base-catalyzed addition of 1,1′-bis(hydroxymethyl)ferrocene to various acetylenes. This ferrocene diol has been shown to be capable of adding to acetylene (KOH/DMSO, 70–80 °C, 1–3 h), propyne (KOH/DMSO, 70 °C, 12 h), phenylethyne (KOH/DMSO, 20–25 °C, 48 h), alkylpropiolates (DABCO, 10 mol%/CH2Cl2, 20–25 °C, 0.5 h), and acylacetylenes (DABCO, 1 mol%/CH2Cl2, 20–25 °C, 0.5 h) to afford the corresponding diethenyl ethers in 73–98% yields.

Supporting Information

 
  • References


    • For recent examples, see:
    • 1a Nieto D, Gonzales-Vadillo AM, Bruna S, Pastor CJ, Rios-Luci C, Leon LG, Padron JM, Navarro-Ranninger C, Cuadrado I. Dalton Trans. 2012; 41: 432
    • 1b Matos J, da Cruz FP, Cabrita E, Gut J, Nogueira F, do Rosario VE, Moreira R, Rosenthal PJ, Prudencio M, Gomes P. Antimicrob. Agents Chemother. 2012; 56: 1564
    • 1c Gao D.-W, Shi Y.-C, Gu Q, Zhao Z.-L, You S.-L. J. Am. Chem. Soc. 2013; 135: 86
    • 1d Kazemizadeha AR, Shajari N, Shapouri R, Adibpour N, Teimuri-Mofradd R, Dinmohammadi P. Appl. Organomet. Chem. 2016; 30: 148
    • 1e Astruc D. Eur. J. Inorg. Chem. 2017; 6
    • 1f Larik FA, Saeed A, Fattah TA, Muqadar U, Channar PA. Appl. Organomet. Chem. 2017; 31: e3664
    • 1g Patra M, Gasser G. Nat. Rev. Chem. 2017; 1: 41570
    • 1h Hassan AS, Hafez TS. J. Appl. Pharm. Sci. 2018; 8: 156

      For selected examples, see:
    • 2a Ferrocenes: Homogeneous Catalyst, Organic Synthesis, Materials Science. Tagni A, Hayashi T. Wiley-VCH; Weinheim: 2007
    • 2b Stepnicka P. Ferrocenes: Ligands, Materials and Biomolecules. Wiley; Chichester: 2008
    • 2c Dai L.-X, Hou X.-L. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications. Wiley; Weinheim: 2009

      For selected examples, see:
    • 3a van Staveren DR, Metzler-Nolte N. Chem. Rev. 2004; 104: 5931
    • 3b Sudhir VS, Kumar NY. P, Chandrasekaran S. Tetrahedron 2010; 66: 1327
    • 3c Patra M, Gasse G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Organometallics 2010; 29: 4312
    • 3d Correia-Ledo D, Arnold AA, Mauzeroll J. J. Am. Chem. Soc. 2010; 132: 15120
    • 3e Soganci T, Demirkol DO, Ak M, Timur S. RSC Adv. 2014; 4: 46357
    • 3f Zhang J, Chen YP, Miller KP, Ganewatta MS, Bam M, Yan Y, Nagarkatti M, Decho AW, Tang C. J. Am. Chem. Soc. 2014; 136: 4873
    • 3g Kovačević M, Kodrin I, Cetina M, Kmetič I, Murati T, Semenčić M. Č, Roca S, Barišić L. Dalton Trans. 2015; 44: 16405
    • 3h Błauż A, Rychlik B, Makal A, Szulc K, Strzelczyk P, Bujacz G, Zakrzewski J, Woźniak K, Plażuk D. ChemPlusChem 2016; 81: 1191
    • 3i Kovač V, Radošević K, Bebek A, Makarević J, Štefanić Z, Barišić L, Žinić M, Rapić V. Appl. Organomet. Chem. 2017; 31: e3653
    • 3j Singh A, Lumb I, Mehra V, Kumar V. Dalton Trans. 2019; 48: 2840
    • 4a Kovjazin R, Eldar T, Patya M, Vanichkin A, Lander HM, Novogrodski A. FASEB J. 2003; 17: 467
    • 4b Zhou M, Sun Z, Shen C, Li Z, Zhang Y, Yang M. Biosens. Bioelectron. 2013; 49: 243
    • 4c Mandal D, Deb P, Mondal B, Thakur A, Ponniah J, Ghosh S. RSC Adv. 2013; 3: 18614
    • 4d Uahengo V, Xionga B, Zhao P, Zhang Y, Cai P, Hu K, Cheng G. Sensor. Actuat. B: Chem. 2014; 190: 937
    • 4e Sun R, Wang L, Yu H, Abdin Z, Chen Y, Huang J, Tong R. Organometallics 2014; 33: 4560
  • 5 Cheng H, Ma C, Chen Y, Ni H.-L, Feng C, Wang B.-Q, Zhao K.-Q, Yu W.-H, Hu P. Liq. Cryst. 2017; 44: 1450
    • 6a Bean LS, Heng LY, Yamin BM, Ahmad M. Bioelectrochemisty 2005; 65: 157
    • 6b Colombari M, Ballarin B, Carpani I, Guadagnini L, Mignani A, Scavetta E, Tonelli D. Electroanalysis 2007; 19: 2321
    • 6c Amer WA, Wang L, Amin AM, Ma L, Yu H. J. Inorg. Organomet. Polym. 2010; 20: 605
    • 6d Liu M, Wang L, Deng J, Chen Q, Li Y, Zhang Y, Li H, Yao S. Analyst 2012; 137: 4577
    • 6e Takahashi S, Anza J.-I. Materials 2013; 6: 5742
    • 6f Saleem M, Yu H, Wang L, Abdin Z, Khalid H, Akram M, Abbasi NM, Huang J. Anal. Chim. Acta 2015; 876: 9
    • 6g Wang L, Yu H. Synthesis, Properties and Applications of Ferrocene-Based Derivatives, Polymers and Hydrogels. Springer; Berlin: 2018: 116
    • 7a Goethals EJ, Haucourt N, Peng L.-B. Macromol. Symp. 1994; 85: 97
    • 7b Kottisch V, Michaudel Q, Fors BP. J. Am. Chem. Soc. 2016; 138: 15535
    • 7c Sugihara S, Kawamoto Y, Maeda Y. Macromolecules 2016; 49: 1563
    • 7d Rodygin KS, Werner I, Ananikov VP. ChemSusChem 2018; 11: 292
    • 7e Teator AJ, Leibfarth FA. Science 2019; 363: 1439
    • 8a Stang PJ, Diederich F. Modern Acetylene Chemistry . Wiley; New York: 2008
    • 8b Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
    • 8c Patel M, Saunthwal RK, Dhaked DK, Bharatam PV, Verma AK. Asian J. Org. Chem. 2016; 5: 213
    • 8d Ledovskaya MS, Voronin VV, Rodygin KS. Russ. Chem. Rev. 2018; 87: 167
    • 8e Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Molecules 2018; 23: 2442
  • 9 Sukhinin VS. Zh. Vses. Khim. Obsh. 1979; 24: 400 ; Chem. Abstr. 1979, 91, 193391p
  • 10 Trofimov BA, Oparina LA, Tarasova OA, Artem’ev AV, Kobychev VB, Gatilov YuV, Albanov AI, Gusarova NK. Tetrahedron 2014; 70: 5954
    • 11a Copenhaver JW, Bigelow MH. Acetylene and Carbon Monoxide Chemistry . Reinhold Publishing Corp; New York: 1949
    • 11b Shostakovsky MF. Simple Vinyl Ethers . Izdatel’stvo Akademii Nauk SSSR; Moscow: 1952. ; Chem. Abstr. 1955, 49, 13287a
    • 11c Malysheva SF, Vyalykh EP, Trofimov BA. Zh. Org. Khim. 1994; 30: 654 ; Chem. Abstr. 1995, 123, 32633h
    • 11d Oparina LA, Khil’ko MYa, Chernyshova NA, Shaikhudinova SI, Parshina LN, Preiss Th, Henkelmann J, Trofimov BA. Russ. J. Org. Chem. 2005; 41: 661
    • 11e Teong SP, Chua AY. H, Deng S, Li X, Zhang Y. Green Chem. 2017; 19: 1659
    • 12a Trofimov BA, Malysheva SF, Sigalov MV, Vyalykh EP, Kalabin GA. Tetrahedron Lett. 1984; 25: 4257
    • 12b Trofimov BA, Oparina LA, Parshina LN, Vins VV, Lavrov VI. Izv. Akad. Nauk SSSR. Ser. Khim. 1989; 2873 ; Chem. Abstr. 1990, 112, 216179u
  • 13 Mueller W, Griesbaum K. J. Org. Chem. 1967; 32: 856
    • 14a Moskalev NV, Timoshchenko LV, Filimonov VD. Zh. Org. Khim. 1991; 27: 2233 ; Chem. Abstr. 1992, 116, 173645
    • 14b Trofimov BA, Sobenina LN, Petrova OV, Mikhaleva AI. Dokl. Ak. Nauk 1993; 328: 61 ; Chem. Abstr. 1993, 119, 8399h
    • 15a Kapitán P, Bach T. Synthesis 2008; 1559
    • 15b Wei H, Wang Y, Yue B, Xu P.-F. Adv. Synth. Catal. 2010; 352: 2450
    • 15c Artem’ev AV, Vysotskaya OV, Oparina LA, Bogomyakov AS, Khutsishvili SS, Sterkhova IV, Ovcharenko VI, Trofimov BA. Polyhedron 2016; 119: 293
    • 16a Tejedor D, Álvarez-Méndez SJ, López-Soria JM, Martín VS, García-Tellado F. Eur. J. Org. Chem. 2014; 198
    • 16b Chung W, Lindovska P, Camp JE. Tetrahedron Lett. 2011; 52: 6785
    • 16c Fan M.-J, Li G.-Q, Li L.-H, Yang S.-D, Liang Y.-M. Synthesis 2006; 2286
  • 17 Claus R, Lewtak JP, Muller TJ, Swarts JC. J. Organomet. Chem. 2013; 740: 61
    • 18a Miller SI, Tanaka R. In Selective Organic Transformations, Vol. 1. Thyagarajan BS. Wiley-Interscience; New York: 1970: 143
    • 18b Dickstein JI, Miller SI. In The Chemistry of the Carbon-Carbon Triple Bond, Part 2. Patai S. Wiley; New York: 1978: 814
  • 19 Skvortsov YuM, Mal’kina AG, Trofimov BA. Khim. Geterotsikl. Soedin. 1983; 996 ; Chem. Abstr. 1983, 99, 88115u
  • 20 Connell A, Holliman PJ, Butler IR, Male L, Coles SJ, Horton PN, Hursthouse MB, Clegg W, Russo L. J. Organomet. Chem. 2009; 694: 2020
  • 21 Yujuan N, Xiaoyu R, Bin Y, Danjun W, Ganglin X, Huaiming H, Feng F, Jiwu W. J. Organomet. Chem. 2010; 695: 1863
  • 22 Tomilin DN, Petrova OV, Sobenina LN, Mikhaleva AI, Trofimov BA. Chem. Heterocycl. Compd. 2013; 49: 341
    • 23a Landor SR, Demetriou B, Grzeskowiak R, Pavey D. J. Organomet. Chem. 1975; 93: 129
    • 23b Mal’kina AG, Sokolyanskaya LV, Kudyakova RN, Sinegovskaya LM, Albanov AI, Shemyakina OA, Trofimov BA. Russ. J. Org. Chem. 2005; 41: 61
  • 24 Hillman M, Austin JD. Organometallics 1987; 6: 1737