Synthesis 2020; 52(03): 433-440
DOI: 10.1055/s-0039-1690242
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Nonsymmetric Iminophosphonamines by Kirsanov Condensation

Tatyana A. Peganova
,
Russian Academy of Sciences, A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilov Str. 28, 119991 Moscow, Russian Federation   Email: kalsin@ineos.ac.ru
› Author Affiliations
This work was supported by the Russian Science Foundation (grant No. 19-13-00459). NMR studies, spectral characterization, elemental analysis were performed with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS.
Further Information

Publication History

Received: 17 September 2019

Accepted after revision: 17 October 2019

Publication Date:
31 October 2019 (online)

Abstract

Despite the growing interest in iminophosphonamines R2P(NHR′)(NR′), nonsymmetric examples bearing different N,N′-substituents are quite rare and have been prepared exclusively by the Staudinger reaction. We report here the synthesis of a series of new iminophosphonamines Ph2P(NHR)(NR′) (R = Me, t-Bu, o-Tol; R′ = p-Tol, o-Tol, 2,6-Xyl, 2,6-Diip, p-Ts) showing that the Kirsanov condensation is a viable and simpler approach, although with some limitations. This method allows the synthesis to be accomplished in a one-pot manner via stepwise double amination of a trihalophosphorane and permits the introduction of at least one sterically bulky N-substituent. The second amination step is shown to be highly sensitive to: (a) the steric bulk of the amine, and (b) the acidity of the aminohalophosphonium intermediate.

Supporting Information

 
  • References

    • 1a Kögel JF, Kneusels N.-J, Sundermeyer J. Chem. Commun. 2014; 50: 4319
    • 1b Gao X, Han J, Wang L. Org. Lett. 2015; 17: 4596
    • 2a Keim W, Appel R, Storeck A, Krüger C, Goddard R. Angew. Chem., Int. Ed. Engl. 1981; 20: 116 ; Angew. Chem. 1981, 93, 11191
    • 2b Schubbe R, Angermund K, Fink G, Goddard R. Macromol. Chem. Phys. 1995; 196: 467
    • 2c Stapleton RL, Chai J, Taylor NJ, Collins S. Organometallics 2006; 25: 2514
    • 2d Collins S, Ziegler T. Organometallics 2007; 26: 6612
    • 2e Stapleton RA, Chai J, Nuanthanom A, Flisak Z, Nele M, Ziegler T, Rinaldi PL, Soares JB. P, Collins S. Macromolecules 2007; 40: 2993
    • 2f Vollmerhaus R, Shao P, Taylor NJ, Collins S. Organometallics 1999; 18: 2731
    • 2g Tomaszewski R, Vollmerhaus R, Al-Humydi A, Wang Q, Taylor NJ, Collins S. Can. J. Chem. 2006; 84: 214
  • 3 Li S, Miao W, Tang T, Dong W, Zhang X, Cui D. Organometallics 2008; 27: 718
    • 4a Albahily K, Fomitcheva V, Gambarotta S, Korobkov I, Murugesu M, Gorelsky SI. J. Am. Chem. Soc. 2011; 133: 6380
    • 4b Albahily K, Fomitcheva V, Shaikh Y, Sebastiao E, Gorelsky SI, Gambarotta S, Korobkov I, Duchateau R. Organometallics 2011; 30: 4201
    • 4c Albahily K, Licciulli S, Gambarotta S, Korobkov I, Chevalier R, Schuhen K, Duchateau R. Organometallics 2011; 30: 3346
    • 5a Straub BF, Hofmann P. Angew. Chem. Int. Ed. 2001; 40: 1288 ; Angew. Chem. 2001, 113, 1328
    • 5b Straub BF, Gruber I, Rominger F, Hofmann P. J. Organomet. Chem. 2003; 684: 124
    • 5c Shishkov IV, Rominger F, Hofmann P. Organometallics 2009; 28: 1049
  • 6 Nebra N, Lescot C, Dauban P, Mallet-Ladeira S, Martin-Vaca B, Bourissou D. Eur. J. Org. Chem. 2013; 984
  • 7 Peganova TA, Kalsin AM, Ustynyuk NA, Vasil’ev AA. Russ. Chem. Bull. 2014; 63: 2305
  • 8 Sinopalnikova IS, Peganova TA, Belkova NV, Deydier E, Daran J.-C, Shubina ES, Kalsin AM, Poli R. Eur. J. Inorg. Chem. 2018; 2285
  • 9 Yang Y, Lv K, Wang L, Wang Y, Cui D. Chem. Commun. 2010; 46: 6150
  • 10 Guo W.-J, Wang Z.-X. J. Org. Chem. 2013; 78: 1054
    • 11a Paciorek KL, Kratzer RH. J. Org. Chem. 1966; 31: 2426
    • 11b Wingerter S, Pfeiffer M, Murso A, Lustig C, Stey T, Chandrasekhar V, Stalke D. J. Am. Chem. Soc. 2001; 123: 1381
    • 11c Vollmerhaus R, Tomaszewski R, Shao P, Taylor NJ, Wiacek KJ, Lewis SP, Al-Humydi A, Collins S. Organometallics 2005; 24: 494
    • 11d Cristau H.-J, Tailefer M, Jouanin I. Synthesis 2001; 69
    • 12a Scherer OJ, Klusmann P. Angew. Chem., Int. Ed. Engl. 1968; 7: 541 ; Angew. Chem. 1968, 80, 560
    • 12b Scherer OJ, Schieder G. Chem. Ber. 1968; 101: 4184
    • 12c Gololobov YG, Kasukhin LF. Tetrahedron 1992; 48: 1353
    • 13a Cristau H.-J, Garcia C. Synthesis 1990; 315
    • 13b Cristau H.-J, Garcia C, Kadoura J, Torreilles E. Phosphorus, Sulfur, Silicon Relat. Elem. 1990; 49–50: 151
    • 13c Gusev OV, Peganova TA, Gonchar AV, Petrovskii PV, Lyssenko KA, Ustynyuk NA. Phosphorus, Sulfur, Silicon Relat. Elem. 2009; 184: 322
    • 14a Li S, Cui D, Li D, Hou Z. Organometallics 2009; 28: 4814
    • 14b Qi C, Zhang S. Appl. Organomet. Chem. 2006; 20: 70
    • 14c Prashanth B, Singh S. Dalton Trans. 2014; 43: 168808
    • 14d Scherer OJ, Schieder G. J. Organomet. Chem. 1969; 19: 315
  • 15 Rufanov KA, Titov IY, Petrov AR, Harms K, Sundermeyer J. Z. Anorg. Allg. Chem. 2019; 645: 559
  • 16 Peganova TA, Sinopalnikova IS, Peregudov AS, Fedyanin IV, Demonceau A, Ustynyuk NA, Kalsin AM. Dalton Trans. 2016; 45: 170301
  • 17 Ford RR, Goodman MA, Neilson RH, Roy AK, Wettermark UG, Wisian-Neilson P. Inorg. Chem. 1984; 23: 2063
  • 18 Wisian-Neilson P, Neilson RH. Inorg. Chem. 1980; 19: 1875
  • 19 Breugst M, Tokuyasu T, Mayr H. J. Org. Chem. 2010; 75: 5250
    • 20a Brotzel F, Chu YC, Mayr H. J. Org. Chem. 2007; 72: 3679
    • 20b Kanzian T, Nigst TA, Maier A, Pichl S, Mayr H. Eur. J. Org. Chem. 2009; 6379