Synthesis 2020; 52(01): 75-84
DOI: 10.1055/s-0039-1690240
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Mediated One-Pot Synthesis of Indoles through Sequential Hydroamination and Cross-Dehydrogenative Coupling Reaction

Peng Sun §
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
b  Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China
,
Jiaojiao Yang §
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
,
Zirui Song
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
,
Yichao Cai
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
,
Yajie Liu
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
,
Chunxia Chen
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
b  Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China
,
Xin Chen
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
b  Material Science and Engineering College, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China
,
a  College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, P. R. of China   Email: ccx0109@nefu.edu.cn   Email: jspeng1998@nefu.edu.cn
› Author Affiliations
We are grateful for financial support from the Fundamental Research Funds for the Central Universities (2572018AB11), National Innovation Experiment Program for University Students (201810225098), and Natural Science Foundation of Heilongjiang Province (B2017002).
Further Information

Publication History

Received: 26 July 2019

Accepted after revision: 15 October 2019

Publication Date:
05 November 2019 (online)


§ These authors contributed equally to this work

Abstract

Starting from simple anilines and ester arylpropiolates, an efficient one-pot synthesis of 2-arylindole-3-carboxylate derivatives has been developed through copper-mediated sequential hydroamination and cross-dehydrogenative coupling (CDC) reaction. The initial hydroamination of anilines to ester arylpropiolates in benzene can proceed in a stereoselective manner to give ester (Z)-3-(arylamino)acrylates in the presence of CuCl2/phenanthroline, KMnO4, and KHCO3 at 120 °C. Sequentially, these in situ functionalized adducts can undergo direct intramolecular oxidative alkenylation of aromatic C–H bond in mixed solvents (benzene/DMSO 1:1) at 130 °C affording multi-substituted­ indoles in good to high yields.

Supporting Information

 
  • References

  • 1 Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
  • 2 Do-Thanh C.-L, Vargas JJ, Thomas JW, Armel GR, Best MD. J. Agric. Food Chem. 2016; 64: 3533
    • 3a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 3b Chadha N, Silakari O. Eur. J. Med. Chem. 2017; 134: 159
    • 4a de Sa Alves FR, Barreiro EJ, Fraga CA. M. Mini-Rev. Med. Chem. 2009; 9: 782
    • 4b Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1
    • 5a Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 5b Singh TP, Singh OM. Mini-Rev. Med. Chem. 2018; 18: 9
    • 6a Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 6b Douglass FT, Pavan KT. Tetrahedron 2011; 67: 7195
    • 6c Vicente R. Org. Biomol. Chem. 2011; 9: 6469
    • 6d Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
    • 7a Battistuzzi G, Cacchi S, Fabrizi G. Eur. J. Org. Chem. 2002; 2671
    • 7b Kruger K, Tillack A, Beller M. Adv. Synth. Catal. 2008; 350: 2153
    • 7c Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
    • 7d Platon M, Amardeil R, Djakovitch L, Hierso JC. Chem. Soc. Rev. 2012; 41: 3929
    • 7e Guo TL, Huang F, Yu L, Yu Z. Tetrahedron Lett. 2015; 56: 296
    • 7f Youn SW, Ko TY. Asian J. Org. Chem. 2018; 7: 1467
  • 8 Cao C, Shi Y, Odom AL. Org. Lett. 2002; 4: 2853
  • 9 Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 11940
  • 10 Penoni A, Nicholas KM. Chem. Commun. 2002; 484
  • 11 Zhou B, Wu Z, Ma D, Ji X, Zhang Y. Org. Lett. 2018; 20: 6440
    • 12a Shi Z, Zhang C, Li S, Pan D, Ding S, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
    • 12b Ren L, Shi Z, Jiao N. Tetrahedron 2013; 69: 4408
    • 12c Zhang G, Yu H, Qin G, Huang H.-M. Chem. Commun. 2014; 50: 4331
    • 12d Shen D, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. Org. Lett. 2015; 17: 3283
    • 12e Kramer S, Dooleweerdt K, Lindhardt AT, Rottländer M, Skrydstrup T. Org. Lett. 2009; 11: 4208
    • 13a Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 13b Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
    • 13c Zhou F, Han X.-L, Lu X.-Y. Tetrahedron Lett. 2011; 52: 4681
    • 13d Hoshino Y, Shibata Y, Tanaka K. Adv. Synth. Catal. 2014; 356: 1577
    • 13e Tao P.-Y, Jia Y.-X. Chem. Commun. 2014; 50: 7367
    • 13f Zhou B, Yang Y, Tang H, Du J, Feng H, Li Y. Org. Lett. 2014; 16: 3900
    • 13g Kim Y, Hong S. Chem. Commun. 2015; 51: 11202
    • 13h Lu Q, Vásquez-Céspedes S, Gensch T, Glorius F. ACS Catal. 2016; 6: 2352
    • 13i Kim HJ, Fabry DC, Madera S, Rueping M. Org. Chem. Front. 2019; 6: 2319
    • 14a Muralirajan K, Cheng CH. Adv. Synth. Catal. 2014; 356: 1571
    • 14b Matsuda T, Tomaru Y. Tetrahedron Lett. 2014; 55: 3302
    • 14c Zheng L, Hua R. Chem. Eur. J. 2014; 20: 2352
    • 15a Wang H, Grohmann C, Nimphius C, Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
    • 15b Kathiravan S, Nicholls IA. Chem. Commun. 2014; 50: 14964
    • 15c Zhang Z.-Z, Liu B, Xu J.-W, Yan S.-Y, Shi B.-F. Org. Lett. 2016; 18: 1776
    • 16a Wang C, Huang Y. Org. Lett. 2013; 15: 5294
    • 16b Liu B, Song C, Sun C, Zhou S, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
    • 16c Liang YJ, Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
    • 17a Kong L, Xie F, Yu S, Qi Z, Li X. Chin. J. Catal. 2015; 36: 925
    • 17b Zhou Z, Liu G.-X, Chen Y, Lu X.-Y. Adv. Synth. Catal. 2015; 357: 2944
    • 17c Yan H, Wang H, Li X, Xin X, Wang C, Wan B. Angew. Chem. Int. Ed. 2015; 54: 10613
    • 17d Wang H, Moselage M, González MJ, Ackermann L. ACS Catal. 2016; 6: 2705
  • 18 Wang C, Sun H, Fang Y, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 5795
    • 19a Zhao D, Shi Z, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
    • 19b Lerchen A, Vasquez-Cespedes S, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
    • 20a Chen J, Song G, Pan C.-L, Li X. Org. Lett. 2010; 12: 5426
    • 20b Chen J.-L, Pang QY, Sun YB, Li X. J. Org. Chem. 2011; 76: 3523
    • 20c Ackermann L, Lygin AV. Org. Lett. 2012; 14: 764
    • 20d Song W, Ackermann L. Chem. Commun. 2013; 49: 6638
    • 20e Allu S, Kumara Swamy KC. Adv. Synth. Catal. 2015; 357: 2665
    • 21a Zhang Z, Jiang H, Huang Y. Org. Lett. 2014; 16: 5976
    • 21b Fan Z.-L, Song S.-S, Li W, Zhang A. Org. Lett. 2015; 17: 310
    • 22a Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 22b Neumann JJ, Rakshit S, Dröge T, Würtz S, Glorius F. Chem. Eur. J. 2011; 17: 7298
    • 23a Guan Z.-H, Yan Z.-Y, Ren Z.-H, Liu X.-Y, Liang Y.-M. Chem. Commun. 2010; 2823
    • 23b He Z, Liu W, Li Z. Chem. Asian J. 2011; 6: 1340
    • 23c Zoller J, Fabry DC, Ronge MA, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13264
    • 23d Lian X.-L, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2014; 16: 3360
    • 23e Huang F, Wu P, Wang L, Chen J, Sun C, Yu Z. J. Org. Chem. 2014; 79: 10553
    • 23f Drouhin P, Taylor RJ. K. Eur. J. Org. Chem. 2015; 2333
  • 24 Bernini R, Fabrizi G, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
  • 25 Ackermann L, Sandmann R, Schinkel M, Kondrashov MV. Tetrahedron 2009; 65: 8930
  • 26 Fang Y.-Q, Lautens M. J. Org. Chem. 2008; 73: 538
    • 27a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 27b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 27c Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 27d Bhunia S, Pawar GG, Kumar SV, Jiang YW, Ma DW. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 27e Tang X, Wu W, Zeng W, Jiang H. Acc. Chem. Res. 2018; 51: 1092
    • 28a Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 28b Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 28c Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
    • 28d Zhu X, Chiba S. Chem. Soc. Rev. 2016; 45: 4504

      For copper-catalyzed indole synthesis, see:
    • 29a Tanimori S, Ura H, Kirihata M. Eur. J. Org. Chem. 2007; 3977
    • 29b Melkonyan FS, Karchava AV, Yurovskaya MA. J. Org. Chem. 2008; 73: 4275
    • 29c Ackermann L, Barfüßer S, Potukuchi HK. Adv. Synth. Catal. 2009; 351: 1064
    • 29d Kumar SV, Saraiah B, Parameshwarappa G, Ila H, Verma GK. J. Org. Chem. 2014; 79: 7961
    • 29e Cacchi S, Fabrizi G, Goggiamani A. Org. Biomol. Chem. 2011; 9: 641
    • 29f Gao D, Back TG. Chem. Eur. J. 2012; 18: 14828
    • 29g Huang F, Wu P, Wang L, Chen J, Sun C, Yu Z. J. Org. Chem. 2014; 79: 10553
    • 29h Huang B, Hu D, Wang J, Wan J.-P, Liu Y. Tetrahedron Lett. 2015; 56: 2551
    • 29i Drouhin P, Taylor RJ. K. Eur. J. Org. Chem. 2015; 2333
    • 29j Li B, Guo S, Zhang J, Zhang X, Fan X. J. Org. Chem. 2015; 80: 5444
    • 29k Liu J, Wei W, Zhao T, Liu X, Wu J, Yu W, Chang J. J. Org. Chem. 2016; 81: 9326
    • 29l Lopez SE, Gallagher R, Gilliland RJ, Ghiviriga I, Dolbier WR. Jr. J. Fluorine Chem. 2017; 193: 118
    • 29m Hu F.-Z, Zhao S.-H, Chen H, Yu S.-W, Xu X.-Y, Yuan W.-C, Zhang X.-M. ChemistrySelect 2017; 2: 1409
    • 29n Li Y, Peng J, Chen X, Mo B, Li X, Sun P, Chen C. J. Org. Chem. 2018; 83: 5288
  • 30 Gao H, Wang H, Huang Z, Yao L, Peng J, Chen C. Chin. J. Org. Chem. 2015; 35: 1707
    • 31a Chen C, Shang G, Zhou J, Yu Y, Li B, Peng J. Org. Lett. 2014; 16: 1872
    • 31b Zhao G, Chen C, Yue Y, Yu Y, Peng J. J. Org. Chem. 2015; 80: 2827
    • 31c Yue Y, Peng J, Wang D, Bian Y, Sun P, Chen C. J. Org. Chem. 2017; 82: 5481
    • 31d Li X, Bian Y, Chen X, Zhang H, Wang W, Ren S, Yang X, Lu C, Chen C, Peng J. Org. Biomol. Chem. 2019; 17: 321
    • 31e Li X, Chen X, Wang H, Chen C, Sun P, Mo B, Peng J. Org. Biomol. Chem. 2019; 17: 4014
  • 32 Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
    • 33a Bahri J, Blieck R, Jamoussi B, Taillefer M, Monnier F. Chem. Commun. 2015; 51: 11210
    • 33b Bahri J, Jamoussi B, van Der Lee A, Taillefer M, Monnier F. Org. Lett. 2015; 17: 1224
    • 33c Ishikawa T, Sonehara T, Minakawa M, Kawatsura M. Org. Lett. 2016; 18: 1422
  • 34 Pan C, Luo F, Wang W, Ye Z, Cheng J. Tetrahedron Lett. 2009; 50: 5044
  • 35 Guo X, Han J, Liu Y, Qin M, Zhang X, Chen B. J. Org. Chem. 2017; 82: 11505
  • 36 Wu C.-J, Meng Q.-Y, Lei T, Zhong J.-J, Liu W.-Q, Zhao L.-M, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. ACS Catal. 2016; 6: 4635
  • 37 Jia Z, Nagano T, Li X, Chan AS. C. Eur. J. Org. Chem. 2013; 858
  • 38 Liu W.-Q, Lei T, Song Z.-Q, Yang X.-L, Wu C.-J, Jiang X, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2017; 19: 3251
  • 39 Garcia J, Greenhouse R, Muchowski JM, Ruiz JA. Tetrahedron Lett. 1985; 26: 1827