Synthesis 2020; 52(01): 135-140
DOI: 10.1055/s-0039-1690214
paper
© Georg Thieme Verlag Stuttgart · New York

Cs2CO3-Promoted C(sp2)–N Formation of Dimethyl Thiocarbamate-Protected Indoles Using Tetramethylthiuram Monosulfide (TMTM)

Han-Ying Peng
a  School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Yu-Xi Wu
a  School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Zhi-Bing Dong
a  School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
b  Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. of China
c  Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. of China
› Author Affiliations
We thank the foundation support from National Natural Science Foundation of China (21302150), Science and Technology Department of Hubei (2019CFB596), Chen-Guang program from Hubei Association for Science and Technology, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University (KLSAOFM1810).
Further Information

Publication History

Received: 15 September 2019

Accepted after revision: 30 September 2019

Publication Date:
15 October 2019 (online)


Abstract

An efficient and simple synthesis of 1-thiocarbamoylindoles is reported in which 1H-indoles react with tetramethylthiuram monosulfide (TMTM) to give a series of 1-thiocarbamoylindoles that were obtained­ in good to excellent yields. The procedure was promoted by Cs2CO3 under transition-metal-free conditions and gives a simple entry to protected indoles.

Supporting Information

 
  • References

  • 1 Sundberg RJ. Indoles . Academic Press; London: 1996
  • 2 Shiri M. Chem. Rev. 2012; 112: 3508
  • 3 Yanagita RC, Nakagawa Y, Yamanaka N, Kashiwagi K, Saito N, Irie K. J. Med. Chem. 2008; 51: 46
  • 4 Katritzky AR, Singh SK, Bobrov S. J. Org. Chem. 2004; 69: 9313
  • 5 Kingi N, Bergman J. J. Org. Chem. 2016; 81: 7711
  • 6 Kutschy P, Suchý M, Dzurilla M, Takasugi M, Kováčik V. Collect. Czech. Chem. Commun. 2000; 65: 1163
  • 7 Legocki J, Matysiak J, Niewiadomy A, Kostecka M. J. Agric. Food Chem. 2003; 51: 362
  • 8 Doss SH, Mohareb RM, Elmegeed GA, Luoca NA. Pharmazie 2003; 58: 607
  • 9 Voss ME, Carter PH, Tebben AJ, Scherle PA, Brown GD, Thompson LA, Xu MZ, Lo YC, Yang GJ, Liu RQ, Strzemienski P, Everlof JG, Trzaskos JM, Decicco CP. Bioorg. Med. Chem. Lett. 2003; 13: 533
  • 10 Kang IJ, Wang LW, Hsu SJ, Lee CC, Lee YC, Wu YS, Hsu TA, Yueh A, Chao YS, Chern JH. Bioorg. Med. Chem. Lett. 2009; 19: 4134
  • 11 Fukamachi S, Fujita S, Murahashi K, Konishi H, Kobayashi K. Synthesis 2010; 2985
  • 12 Kobayashi K, Yamane K, Fukamachi S. Helv. Chim. Acta 2013; 96: 93
  • 13 Kaname M, Sashida H. Tetrahedron Lett. 2012; 53: 748
  • 14 Sivapriya K, Suguna P, Banerjee A, Saravanan V, Rao DN, Chandrasekaran S. Bioorg. Med. Chem. Lett. 2007; 17: 6387
  • 15 Zhang MB, Dally R, Bullock W. Synthetic Commun. 2004; 34: 4023
  • 16 Enders D, Rembiak A, Liebich JX. Synthesis 2011; 281
    • 17a Zeng MT, Xu W, Liu M, Liu X, Chang CZ, Zhu H, Dong ZB. Synthetic Commun. 2017; 47: 1434
    • 17b Zeng MT, Xu W, Liu X, Chang CZ, Zhu H, Dong ZB. Eur. J. Org. Chem. 2017; 6060
    • 17c Dong ZB, Liu X, Bolm C. Org. Lett. 2017; 19: 5916
    • 18a Zeng MT, Wang M, Peng HY, Cheng Y, Dong ZB. Synthesis 2018; 50: 644
    • 18b Cao Q, Peng HY, Cheng Y, Dong ZB. Synthesis 2018; 50: 1527
    • 19a Liu X, Liu M, Xu W, Zeng MT, Zhu H, Chang CZ, Dong ZB. Green Chem. 2017; 19: 5591
    • 19b Liu X, Zhang SB, Dong ZB. Eur. J. Org. Chem. 2018; 5406
    • 19c Peng HY, Dong ZB. Eur. J. Org. Chem. 2019; 949
    • 19d Dong ZB, Wang M, Zhu H, Liu X, Chang CZ. Synthesis 2017; 49: 5258