Synthesis 2020; 52(03): 471-478
DOI: 10.1055/s-0039-1690213
paper
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Oxidative Coupling of Tetrahydroisoquinolines and 3-Fluorooxindoles on Water

Jian Ji
,
,
Zi-Bin Qiu
,
Xinfeng Ren
,
Ya Li
Natural Science Foundation of Shanghai (16ZR1413800) and Shanghai University of Engineering and Science (2012td09, nhrc-2015-09)
Further Information

Publication History

Received: 10 September 2019

Accepted after revision: 30 September 2019

Publication Date:
21 October 2019 (online)

Abstract

An efficient, metal-free oxidative coupling of tetrahydroisoquinolines and 3-fluorooxindoles on water has been developed. Using aqueous tert-butyl hydroperoxide as the oxidant, Et3N as the base, and water as the sole solvent, a variety of 3-fluorooxindoles fully substituted at the 3-position and containing a tetrahydroisoquinoline fragment has been successfully prepared in yields of up to 93% with an anti/syn stereo­selectivity of up to 99:1 under very mild and safe reaction conditions.

Supporting Information

 
  • References

    • 2a Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 2b Cao Z.-Y, Wang Y.-H, Zeng X.-P, Zhou J. Tetrahedron Lett. 2014; 55: 2571
    • 2c Dalpozzo R. Org. Chem. Front. 2017; 4: 2063
    • 3a Gribkoff VK, Starrett JE. Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW. Nat. Med. 2001; 7: 471
    • 3b Cheney JA, Weisser JD, Bareyre FM, Laurer HL, Saatman KE, Raghupathi R, Gribkoff V, Starrett JE. Jr, McIntosh TK. J. Cereb. Blood Flow Metab. 2001; 21: 396

      For selected examples, see:
    • 4a Li J, Cai Y, Chen W, Liu X, Lin L, Feng X. J. Org. Chem. 2012; 77: 9148
    • 4b Shibata N, Ishimaru T, Suzuki E, Kirk KL. J. Org. Chem. 2003; 68: 2494
    • 4c Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
    • 4d Zhang R, Wang D, Xu Q, Jiang J, Shi M. Chin. J. Chem. 2012; 30: 1295
    • 4e Zoute L, Audouard C, Plaquevent J.-C, Cahard D. Org. Biomol. Chem. 2003; 1: 1833
    • 4f Gu X, Zhang Y, Xu Z.-J, Che C.-M. Chem. Commun. 2014; 50: 7870
    • 4g Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 4157
    • 4h Zhu C.-L, Maeno M, Zhang F.-G, Shigehiro T, Kagawa T, Kawada K, Shibata N, Ma J.-A. Eur. J. Org. Chem. 2013; 6501

      For selected examples, see:
    • 5a Dou X, Lu Y. Org. Biomol. Chem. 2013; 11: 5217
    • 5b Balaraman K, Wolf C. Angew. Chem. Int. Ed. 2017; 56: 1390
    • 5c Wang T, Hoon DL, Lu Y. Chem. Commun. 2015; 51: 10186
    • 5d Paladhi S, Park SY, Yang JW, Song CE. Org. Lett. 2017;  19: 5336
    • 5e Jin Y, Chen M, Ge S, Hartwig JF. Org. Lett. 2017; 19: 1390
    • 5f Ding R, Wolf C. Org. Lett. 2018; 20: 892
    • 5g Balaraman K, Ding R, Wolf C. Adv. Synth. Catal. 2017; 359: 4165
    • 5h Moskowitz M, Balaraman K, Wolf C. J. Org. Chem. 2018; 83: 1661

      For selected examples on the use of 3-fluoro-3-(2,2,2-trifluoro-1,1-dihydroxyethyl)indolin-2-one as the starting material, see:
    • 6a Zhu Y, Mao Y, Mei H, Pan Y, Han J, Soloshonok VA, Hayashi T. Chem. Eur. J. 2018; 24: 8994
    • 6b Zhu Y, Mei H, Han J, Soloshonok VA, Zhou J, Pan Y. J. Org. Chem. 2017; 82: 13663
    • 6c Xie C, Zhang L, Sha W, Soloshonok VA, Han J, Pan Y. Org. Lett. 2016; 18: 3270
    • 6d Zhang W, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y. Eur. J. Org. Chem. 2017; 1540
    • 6e Zhang L, Zhang W, Mei H, Han J, Soloshonok VA, Pan Y. Org. Biomol. Chem. 2017; 15: 311
    • 6f Xie C, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y. RSC Adv. 2017; 7: 5679

      For selected reviews: see:
    • 7a Le VH, Inai M, Williams RM, Kan T. Nat. Prod. Rep. 2015; 32: 328
    • 7b Sridharan V, Suryavanshi PA, Menendez JC. Chem. Rev. 2011; 111: 7157
    • 7c Siengalewicz P, Rinner U, Mulzer J. Chem. Soc. Rev. 2008; 37: 2676

      For reviews, see:
    • 8a Girard SA, Thomas K, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 8b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 8c Li C.-J. Acc. Chem. Res. 2009; 42: 335

      For the very recent examples on the C1-functionaliziation of tetrahydroisoquinoline through the CDC reaction, see:
    • 9a Džambaskia Z, Bondžić BP. Org. Biomol. Chem. 2019; 17: 6420
    • 9b Gil-Negrete JM, Sestelo JP, Sarandeses LA. J. Org. Chem. 2019; 84: 9778
    • 9c Li B, Wendlandt AE, Stahl SS. Org. Lett. 2019; 21: 1176
    • 9d Xu C, Zhu Z, Wang Y, Jing Z, Gao B, Zhao L, Dong W.-K. J. Org. Chem. 2019; 84: 2234
    • 10a Chu L, Qing F.-L. Chem. Commun. 2010; 46: 6285
    • 10b Fu W, Guo W, Zou G, Xu C. J. Fluorine Chem. 2012; 140: 88
    • 10c Mitsudera H, Li C.-J. Tetrahedron Lett. 2011; 52: 1898
  • 11 Chu L, Zhang X, Qing F.-L. Org. Lett. 2009; 11: 2197
  • 12 Chen Q, Zhou J, Wang Y, Wang C, Liu X, Xu Z, Lin L, Wang R. Org. Lett. 2015; 17: 4212
    • 13a Li W, Zhu Y, Duan Y, Zhang M, Zhu C. Adv. Synth. Catal. 2015; 357: 1277
    • 13b Li W, Zhu X, Mao H, Tang Z, Cheng Y, Zhu C. Chem. Commun. 2014; 50: 7521
  • 14 Punirun T, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. J. Org. Chem. 2018; 83: 765
  • 15 Shirley LD, Ceban V, Meazza M, Rios R. ChemistrySelect 2016; 1: 13
  • 16 Ji J, Chen L.-Y, Qiu Z.-B, Ren X, Li Y. Asian J. Org. Chem. 2019; 8: 1436
    • 17a Zhao J.-B, Li Y, Chen L.-Y, Ren X. J. Org. Chem. 2019; 84: 5099
    • 17b Chen X, Li Y, Zhao J.-B, Zheng B.-Q, Lu Q, Ren X. Adv. Synth. Catal. 2017; 359: 3057
    • 17c Zheng B.-Q, Chen L.-Y, Zhao J.-B, Ji J, Qiu Z.-B, Ren X, Li Y. Org. Biomol. Chem. 2018; 16: 8989
    • 18a Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
    • 18b Wang HLi X, Wu F, Wan B. Tetrahedron Lett. 2012; 53: 681
    • 19a Mudithanapelli C, Dhorma LP, Kim Mi-h. Org. Lett. 2019; 21: 3098
    • 19b Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddya KR. Adv. Synth. Catal. 2012; 354: 2985
    • 19c Fang L, Li Z, Jiang Z, Tan Z, Xie Y. Eur. J. Org. Chem. 2016; 3559

      For examples of metal-catalyzed oxidative coupling of tetrahydroisoquinolines in water, see:
    • 20a Baslé O, Li C.-J. Green Chem. 2007; 9: 1047
    • 20b Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 47: 11787
    • 20c Meng Q.-Y, Liu Q, Zhong J.-J, Zhang H.-H, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2012; 14: 5992
    • 20d Wu C.-J, Zhong J.-J, Meng Q.-Y, Lei T, Gao X.-W, Tung C.-H, Wu L.-Z. Org. Lett. 2015; 17: 884
    • 20e Zhang Y, Wei B.-W, Wang W.-X, Deng L.-L, Nie L.-J, Luo H.-Q, Fan X.-L. RSC Adv. 2017; 7: 1229
    • 21a Rao GA, Periasamy M. Synthesis 2018; 50: 617
    • 21b Lin B, Lu G, Lin R, Cui Y, Liu Y, Tang G, Zhao Y. Synlett 2018; 29: 2697
    • 21c Zhang Z, Gu K, Bao Z, Xing H, Yang Q, Ren Q. Tetrahedron 2017; 73: 3118