Synthesis 2019; 51(20): 3891-3900
DOI: 10.1055/s-0039-1690132
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Solvent-Free Microwave-Assisted Synthesis of Cinnamamides by Amidation Reaction Using Phenylboronic Acid/Lewis Base Co-catalytic System

Khadidja Khaldoun
a  Laboratoire de synthèse organique appliqué, Université Oran1, Bp 1524 El M’naouer 31000 Oran, Algeria
,
a  Laboratoire de synthèse organique appliqué, Université Oran1, Bp 1524 El M’naouer 31000 Oran, Algeria
,
Salima Saidi-Besbes
a  Laboratoire de synthèse organique appliqué, Université Oran1, Bp 1524 El M’naouer 31000 Oran, Algeria
,
Bertrand Carboni
b  Univ Rennes, CNRS, ISCR, UMR 6226, 263 avenue du Général Leclerc, Campus de Beaulieu, 35000 Rennes, France   eMail: francois.carreaux@univ-rennes1.fr
,
Rémy Le Guével
c  Univ Rennes, ImPACell Platform, SFR Biosit, 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
,
b  Univ Rennes, CNRS, ISCR, UMR 6226, 263 avenue du Général Leclerc, Campus de Beaulieu, 35000 Rennes, France   eMail: francois.carreaux@univ-rennes1.fr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 14. Juni 2019

Accepted after revision: 08. Juli 2019

Publikationsdatum:
29. Juli 2019 (online)


Abstract

A microwave-assisted dehydrative amide condensation reaction is reported as an efficient access to cinnamamide derivatives under solvent-free conditions. This protocol between conjugated carboxylic acids and amines is based on the use of a co-catalytic system, including the presence of the commercially available phenylboronic acid and 4-(N,N-dimethylamino)pyridine N-oxide (DMAPO), with a complete chemoselectivity in favor of the corresponding α,β-unsaturated amides. The implementation of the reaction needs no special precaution, and less reactive amines, such as substituted anilines, are also efficient under these conditions. A series of novel conjugated amides have been evaluated for their cytotoxic activities against several human cancer cell lines.

Supporting Information

 
  • References

    • 1a Adesina SK. Planta Med. 1989; 55: 324
    • 1b Adesina SK, Reisch J. Phytochemistry 1989; 28: 839
  • 2 Chatterjee A, Dutta CP. Tetrahedron 1967; 23: 1769
  • 3 Bezerra DP, Pessoa C, De Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV. Eur. J. Pharm. Sci. 2013; 48: 453 ; and references cited therein
  • 4 Guzman JD. Molecules 2014; 19: 19292
  • 5 Son S, Lewis BA. J. Agric. Food Chem. 2002; 50: 468
  • 6 Tardugno R, Giancotti G, De Burghgraeve T, Delang L, Neyts J, Leyssen P, Brancale A, Bassetto M. Bioorg. Med. Chem. 2018; 26: 869
  • 7 Han M, Ma X, Jin Y, Zhou W, Cao J, Wang Y, Zhou S, Wang G, Zhu Y. Bioorg. Med. Chem. Lett. 2014; 24: 5284
  • 8 Chen G, Zhang Y, Liu X, Fang Q, Wang Z, Fu L, Liu Z, Wang Y, Zhao Y, Li X, Liang G. J. Med. Chem. 2016; 59: 2436
  • 9 For a review, see: Gunia-Krzyzak A, Panczyk K, Waszkielewicz AM, Marona H. ChemMedChem 2015; 10: 1302
  • 10 For a more recent example, see: Wang J, Cai P, Yang X.-L, Li F, Wu J.-J, Kong L.-Y, Wang X.-B. Eur. J. Med. Chem. 2017; 139: 68
  • 11 For a review, see: Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 12a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 12b Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
  • 13 Pattabiraman VR, Bode JW. Nature 2011; 480: 471

    • For reviews, see:
    • 14a Maki T, Ishihara K, Yamamoto H. Tetrahedron 2007; 63: 8645
    • 14b Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
    • 14c Zheng H, Hall DG. Aldrichimica Acta 2014; 47: 41
    • 14d Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
  • 16 Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196

    • Concerning the bifunctional aminoarylboronic acids, see:
    • 17a Arnold K, Batsanov AS, Davies B, Whiting A. Green Chem. 2008; 10: 124

    • Concerning the ortho-haloarylboronic acids, see:
    • 17b Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386

    • Concerning the (thiophenyl)methylarylboronic acids, see:
    • 17c El Dine TM, Erb W, Berhault Y, Rouden J, Blanchet J. J. Org. Chem. 2015; 80: 4532
    • 18a Latta R, Springsteen G, Wang B. Synthesis 2001; 1611
    • 18b Gernigon N, Zheng H, Hall DG. Tetrahedron Lett. 2013; 54: 4475
    • 18c Gu L, Lim J, Cheong JL, Lee SS. Chem. Commun. 2014; 50: 7017
    • 18d Lu Y, Wang K, Ishihara K. Asian J. Org. Chem. 2017; 6: 1191
    • 19a Hernández Barajas JG, Vargas Méndez LY, Kouznetsov VV, Stashenko EE. Synthesis 2008; 377
    • 19b Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
    • 20a Renault S, Bertrand S, Carreaux F, Bazureau J.-P. J. Comb. Chem. 2007; 9: 935
    • 20b Debdab M, Carreaux F, Renault S, Soundararajan M, Fedorov O, Filippakopoulos P, Lozach O, Babault L, Tahtouh T, Baratte B, Ogawa Y, Hagiwara M, Einsenreich A, Rauch U, Knapp S, Meijer L, Bazureau J.-P. J. Med. Chem. 2011; 54: 4172
    • 20c Brun E, Safer A, Carreaux F, Bourahla K, L’helgoua’ch J.-M, Bazureau J.-P, Villalgordo JM. Molecules 2015; 20: 11617

      For the direct amidation reaction under microwave conditions, see:
    • 21a Perreux L, Loupy A, Volatron F. Tetrahedron 2002; 58: 2155
    • 21b Gelens EL, Smeets L, Sliedregt LA. J. M, Van Steen BJ, Kruse CG, Leurs R, Orru RV. A. Tetrahedron Lett. 2005; 46: 3751
    • 21c Ojeda-Porras A, Hernández-Santana A, Gamba-Sánchez D. Green Chem. 2015; 17: 3157
  • 22 Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F, Doherty EM, Norman MH, Wild KD, Bannon AW, Louis J.-C, Treanor JJ. S. J. Pharmacol. Exp. Ther. 2005; 313: 474
  • 23 Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Hannan SL, Lappin SC, Egerton J, Smith GD, Worby A, Howett L, Owen D, Nasir S, Davies CH, Thompson M, Wyman PA, Randall AD, Davis JB. Neuropharmacology 2004; 46: 133

    • For mechanistic studies, see:
    • 24a Wang C, Yu H.-Z, Fu Y, Guo Q.-X. Org. Biomol. Chem. 2013; 11: 2140
    • 24b Arkhipenko S, Sabatini MT, Batsanov AS, Karaluka V, Sheppard TD, Rzepa HS, Whiting A. Chem. Sci. 2018; 9: 1058
  • 25 These conditions seem to remain efficient for a scale-up of final products. For instance, from 2.0 mmol of starting materials, the compound 5aa was obtained in 60% yield instead of 65%.
  • 26 David S, Mandabi A, Uzi S, Aharoni A, Meijler MM. ACS Chem. Biol. 2018; 13: 247
  • 27 For a recent application, see: Zhang M, Kumagai N, Shibasaki M. Chem. Eur. J. 2017; 23: 12450
  • 28 Haadsma-Svensson SR, Cleek KA, Dinh DM, Duncan JN, Haber CL, Huff RM, Lajiness ME, Nichols NF, Smith MW, Svensson KA, Zaya MJ, Carlsson A, Lin C.-H. J. Med. Chem. 2001; 44: 4716
  • 29 Fukuyama T, Arai M, Matsubara H, Ryu I. J. Org. Chem. 2004; 69: 8105
  • 30 Sekiya R, Nishikiori S.-I, Ogura K. Inorg. Chem. 2006; 45: 9233
  • 31 Peng J.-B, Geng H.-Q, Li D, Qi X, Ying J, Wu X.-F. Org. Lett. 2018; 20: 4988
  • 32 Qiu J, Zhang R. Org. Biomol. Chem. 2014; 12: 1556
  • 33 Liu L, Du L, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2014; 16: 5772
  • 34 Chen L, Jin Y, Chen H, Sun C, Fu W, Zheng L, Lu M, Chen P, Chen G, Zhang Y, Liu Z, Wang Y, Song Z, Liang G. Eur. J. Med. Chem. 2018; 143: 361
  • 35 Xu X, Feng H, Huang L, Liu X. J. Org. Chem. 2018; 83: 7962
  • 36 Xiao C, Wang Z, Lei M, Hu L. Tetrahedron 2017; 73: 204