CC BY-ND-NC 4.0 · Synlett 2019; 30(14): 1673-1678
DOI: 10.1055/s-0039-1690110
cluster
Copyright with the author

Activation of Quinolines by Cationic Chalcogen Bond Donors

P. Wonner
,
T. Steinke
,
S. M. Huber
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (638337).
Further Information

Publication History

Received: 25 April 2019

Accepted after revision: 17 June 2019

Publication Date:
09 August 2019 (online)


§ Both authors contributed equally

Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis

Abstract

The application of already established as well as novel selenium- and sulfur-based cationic chalcogen bond donors in the catalytic activation of quinoline derivatives is presented. In the presence of selected catalysts, rate accelerations of up to 2300 compared to virtually inactive reference compounds are observed. The catalyst loading can be reduced to 1 mol% while still achieving nearly full conversion for electron-poor and electron-rich quinolines. Contrary to expectations, preorganized catalysts were less active than the more flexible variants.

Supporting Information

 
  • References and Notes

  • 1 Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
  • 2 Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
  • 3 Zhao Y, Beuchat C, Domoto Y, Gajewy J, Wilson A, Mareda J, Sakai N, Matile S. J. Am. Chem. Soc. 2014; 136: 2101
  • 4 Schottel BL, Chifotides HT, Dunbar KR. Chem. Soc. Rev. 2008; 37: 68
  • 5 Bulfield D, Huber SM. Chem. Eur. J. 2016; 41: 14434
  • 6 Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
  • 7 Nagorny P, Sun Z. Beilstein J. Org. Chem. 2016; 12: 2834
  • 8 Tepper R, Schubert SU. Angew. Chem. Int. Ed. 2018; 57: 6004
  • 9 Vogel L, Wonner P, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 1880
  • 10 Lim JY. C, Beer PD. Chemistry 2018; 4: 731
  • 11 Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C. Chem. Rev. 2018; 118: 2010
  • 12 Mahmudov KT, Kopylovich MN, Guedes da Silva MF. C, Pombeiro AJ. L. Dalton Trans. 2017; 10121
    • 13a Murray JS, Lane P, Clark T, Politzer P. J. Mol. Model. 2007; 13: 291
    • 13b Rosenfield RE, Parthasarathy R, Dunitz JD. J. Am. Chem. Soc. 1977; 99: 4860
    • 13c Murray JS, Lane P, Clark T, Politzer P. J. Mol. Model. 2009; 15: 723
    • 13d Pearson RG. J. Am. Chem. Soc. 1963; 85: 3533
    • 13e Ramasubbu N, Parthasarathy R, Murray-Rust P. J. Am. Chem. Soc. 1986; 108: 4308
    • 13f Murray-Rust P, Motherwell WD. S. J. Am. Chem. Soc. 1979; 101: 4374
    • 13g Politzer P, Murray JS, Clark T. Phys. Chem. Chem. Phys. 2010; 12: 7748
    • 13h Politzer P, Riley KE, Bular FA, Murray JS. Comput. Theor. Chem. 2012; 998: 2
  • 14 Wang W, Ji B, Zhang Y. J. Phys. Chem. A 2009; 113: 8132
  • 15 Bleiholder C, Gleiter R, Werz DB, Köppel H. Inorg. Chem. 2007; 46: 2249
    • 16a Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 16b Werz DB, Gleiter R, Rominger F. J. Am. Chem. Soc. 2002; 124: 10638
    • 16c Werz DB, Gleiter R, Romiger F. J. Org. Chem. 2002; 67: 4290
    • 16d Schulte JH, Werz DB, Romiger F, Gleiter R. Org. Biomol. Chem. 2003; 1: 2788
    • 16e Werz DB, Gleiter R, Romiger F. Organometallics 2003; 22: 843
    • 16f Gleiter R, Werz DB, Rausch BJ. Chem. Eur. J. 2003; 9: 2676
    • 16g Bleiholder C, Werz DB, Köppel H, Gleiter R. J. Am. Chem. Soc. 2006; 128: 2666
  • 17 Iwaoka M, Tomoda S. J. Am. Chem. Soc. 1996; 118: 8077
  • 18 Wirth T. Angew. Chem. Int. Ed. Engl. 1995; 34: 1726
  • 19 Garrett GE, Carrera EI, Seferos DS, Taylor MS. Chem. Commun. 2016; 52: 9881
  • 20 Garrett GE, Gibson GL, Straus RN, Seferos DS, Taylor MS. J. Am. Chem. Soc. 2015; 137: 4126
  • 21 Lim JY. C, Marques I, Félix V, Beer PD. Chem. Commun. 2018; 54: 10851
  • 22 Lim JY. C, Marques I, Thompson AL, Christensen KE, Félix V, Beer PD. J. Am. Chem. Soc. 2017; 139: 3122
  • 23 Lim JY. C, Liew JY, Beer PD. Chem. Eur. J. 2018; 24: 14560
  • 24 Benz S, López-Andarias J, Mareda J, Sakai N, Matile S. Angew. Chem. Int. Ed. 2017; 56: 812
  • 25 Benz S, Mareda J, Besnard C, Sakai N, Matile S. Chem. Sci. 2017; 8: 8164
    • 26a Wonner P, Vogel L, Düser M, Gomes L, Kniep F, Mallick B, Werz DB, Huber SM. Angew. Chem. Int. Ed. 2017; 56: 12009
    • 26b General procedure for the synthesis of chalcogeno ureas 1113: Under an argon atmosphere, the respective bis(benz)imidazolium compound (1 equiv) was added to a Schlenk flask and dissolved in anhydrous methanol (0.17 m; dried for 24 h over molecular sieve). To the solution, elemental selenium powder or sulfur (2.5 equiv) and cesium carbonate (2.5 equiv) were added. The mixture was heated at reflux for 24 h and finally filtered (hot solution) over a short plug of silica and rinsed with CH2Cl2. After the solvent was removed, the crude solid was purified by column chromatography (solvents noted for specific compounds). All spectroscopic data are given in the Supporting Information.
    • 26c General methylation procedure for the synthesis of compounds 8–10: Under an argon atmosphere, the respective chalcogenourea compound (1 equiv) was dissolved in anhydrous CH2Cl2. Then methyl trifluoromethanesulfonate (2.5 equiv) was slowly added at 0 °C and the reaction mixture was stirred for 24 h at room temperature. After the solvent was removed under reduced pressure, the crude residual was diluted in a little acetonitrile and was precipitated by addition of diethyl ether. The solid was filtered off, washed with diethyl ether and pentane and dried under high vacuum. Alternatively, the solvent was removed, and the residue was washed under sonification several times with ether and pentane. Finally, the respective methylated chalcogenated compound was obtained as colorless solid. All spectroscopic data are given in the Supporting Information.
    • 26d Spectroscopic data for selected compounds 9SeMe, 9SMe and syn-10SMe: Compound 9SeMe : Yield: 294 mg (74%); solid; 1H NMR (300 MHz, CDCl3): δ = 8.50 (s, 1 H), 8.17 (dd, J = 7.10, 1.80 Hz, 2 H), 8.08 (dd, J = 9.00, 6.80 Hz, 1 H), 7.69 (m, 6 H), 7.43 (dd, J = 7.50, 0.80 Hz, 2 H), 4.67 (d, J = 8.00 Hz, 4 H), 2.41 (s, 6 H), 2.01 (q, J = 7.70 Hz, 4 H), 1.31 (m, 20 H), 0.87 (m, 6 H). 13C NMR (101 MHz, CD3CN): δ = 147.29, 136.10, 135.34, 133.76, 133.48, 131.77, 128.22, 128.59, 128.39, 122.09 (d, J = 321.0 Hz), 114.49, 114.07, 49.88, 32.48, 30.24, 28.79 (d, J = 4.50 Hz), 27.34, 23.34, 14.38, 11.51. 19F NMR (235 MHz, CD3CN): δ = −78.53 (s, 6 F). ATR-IR: 3073  (w), 2928  (w), 2857  (w), 1738  (w), 1603  (w), 1501  (m), 1477  (m), 1429  (m), 1358  (w), 1250 (vs), 1223  (s), 1148  (s), 1086  (w), 1028 (vs), 926  (w), 831  (w), 800  (w), 752  (s), 698  (w), 635 (vs), 571  (m), 515  (s), 432  (w) cm–1. ESI-MS (+): m/z [M-OTf]+ calcd. 873.21; found: 872.87; ESI-MS (–): m/z [OTf] calcd. 148.95; found 148.80. Anal. calcd. for CHNS: C, 51.82; H, 5.65; N, 6.04; S, 13.83; found: C, 51.79; H, 5.42; N, 5.77; S, 13.72. Compound 9SMe : Yield: 620 mg (79%); solid; 1H NMR (300 MHz, CDCl3): δ = 8.50 (s, 1 H), 8.15 (m, 3 H), 7.68 (sd, J = 8.4, 1.3 Hz, 6 H), 7.43 (d, J = 7.7 Hz, 2 H), 4.64 (d, J = 7.7 Hz, 4 H), 2.51 (s, 6 H), 2.02 (p, J = 7.7 Hz, 4 H), 1.38 (m, 20 H), 0.87 (m, 6 H). 13C NMR (101 MHz, CD3CN): δ = 151.20, 135.35, 134.66, 134.08, 132.97, 131.67, 129.18, 128.83, 127.88, 114.53, 113.93, 48.76, 32.48, 30.11, 29.79 (d, J = 5.40 Hz), 27.35, 23.40, 18.51, 14.37. 19F NMR (235 MHz, CD3CN): δ = −79.28 (s, 6 F). ATR-IR: 3073  (w), 2928  (w), 2857  (w), 1738  (w), 1603  (w), 1501  (w), 1477  (w), 1462  (w), 1431  (w), 1364  (w), 1254  (s), 1223  (m), 1150  (m), 1088  (w), 1028 (vs), 847  (w), 802  (w), 752  (m), 698  (w), 634 (vs), 571  (w), 515  (m) cm–1. ESI-MS (+): m/z [M + OTf ]+ calcd. 777.32; found: 777.51; ESI-MS (–): m/z [OTf] calcd. 148.95; found: 149.00. Anal. calcd. CHNS: C, 51.82; H, 5.65; N, 6.04; S, 13.83; found: C, 51.79; H, 5.42; N, 5.77; S, 13.72. Compound syn-10SMe : Yield: 323 mg (87%); solid; 1H NMR (300 MHz, CD3CN): δ = 8.40 (t, J = 8.1 Hz, 1 H), 8.24 (d, J = 8.1 Hz, 2 H), 8.04 (dd, J = 7.3, 2.0 Hz, 2 H), 7.81 (dtd, J = 13.0, 7.3, 1.4 Hz, 4 H), 7.67 (d, J = 7.7 Hz, 2 H), 4.71 (td, J = 7.4, 1.9 Hz, 4 H), 2.51 (s, 6 H), 2.03 (m, 4 H), 1.28 (m, 20 H), 0.87 (m, 6 H).13C NMR (101 MHz, CD3CN): δ = 151.83, 138.65, 136.31, 135.17, 133.42 (d, J = 1.60 Hz), 132.81, 129.84, 129.26, 127.14 (q, J = 31.0 Hz), 122.12 (d, J = 321.5 Hz), 114.93, 114.37, 49.30, 32.36, 29.88, 29.68 (d, J = 8.80 Hz), 27.09, 23.30, 18.89, 14.34. 19F NMR (235 MHz, CD3CN): δ = −56.73 (s, 3 F), −79.32 (s, 6 F). ATR-IR: 2927  (w), 2857  (w), 1547  (w), 1501  (w), 1477  (w), 1433  (w), 1364  (w), 1256 (vs), 1223  (m), 1175  (m), 1140  (m), 1028  (s), 984  (w), 858  (w), 752  (m), 687  (w), 635  (s), 573  (m), 517  (w), 434  (w) cm–1. ESI-MS (+): m/z [M+OTf ]+ calcd. 845.31; found: 845.27; ESI-MS (–): m/z [OTf] calcd. 148.95; found: 148.66. Anal. calcd. CHNS: C, 49.49; H, 5.17; N, 5.63; S, 12.89; found: C, 48.55; H, 4.94; N, 5.53; S, 12.37.
  • 27 Wonner P, Vogel L, Kniep F, Huber SM. Chem. Eur. J. 2017; 23: 16972
  • 28 Benz S, Besnard C, Matile S. Helv. Chim. Acta 2018; 101: e1800075
  • 29 Sebastian B, Poblador-Bahamonde AI, Nicolas LD, Stefan M. Angew. Chem. Int. Ed. 2018; 57: 5408
  • 30 Bolm C, Bruckmann A, Pena M. Synlett 2008; 900
  • 31 Jungbauer SH, Schindler S, Kniep F, Walter SM, Rout L, Huber SM. Synlett 2013; 24: 2624
  • 32 Togo H, Iida S. Synlett 2006; 2159
  • 33 General Procedure for the Reduction of 1a: In a dry NMR tube, freshly prepared stock solutions of the respective catalyst (100 μL, 2.5 mm), the quinoline derivative (100 μL, 250 mm) and the Hantzsch ester (400 μL, 150 mm) were added, sealed and shaken for 1 min. Afterwards, a series of 1H NMR measurements were performed with a total duration of 12 h (for selected derivatives 24 h). As internal standard TES (0.125 equiv) was added to the quinoline stock solution.
  • 34 The syn-12BIm-Cl atropisomer decomposed during its synthesis.
  • 35 Jungbauer SH, Huber SM. J. Am. Chem. Soc. 2015; 137: 12210
  • 36 Gliese JP, Jungbauer SH, Huber SM. Chem. Commun. 2017; 53: 12052
  • 37 Srivastava K, Chakraborty T, Singh HB, Butcher RJ. Dalton Trans. 2011; 4489
  • 38 Srivastava K, Shah P, Singh HB, Butcher RJ. Organometallics 2011; 30: 534
  • 39 Nagao T, Hirata S, Goto S, Sano S, Kakehi A, Iizuka K, Shiro M. J. Am. Chem. Soc. 1998; 12: 3104
  • 40 Franchetti P, Cappellacci L, Grifantini M, Barzi A, Nocentini G, Yang H, O’Connor A, Jayaram HN, Carrell C, Goldstein BM. J. Med. Chem. 1995; 38: 3829
  • 41 Birman VB, Li X. Org. Lett. 2008; 10: 1115
  • 42 Leverett CA, Vikram VC, Purohit C, Romo D. Angew. Chem. Int. Ed. 2010; 49: 9479
  • 43 Robinson ER. T, Fallan C, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2013; 4: 2193