Synthesis 2020; 52(07): 1060-1066
DOI: 10.1055/s-0039-1690055
paper
© Georg Thieme Verlag Stuttgart · New York

Thioesterification and Selenoesterification of Amides via Selective N–C Cleavage at Room Temperature: N–C(O) to S/Se–C(O) Interconversion

Md. Mahbubur Rahman
,
Guangchen Li
,
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA   Email: michal.szostak@rutgers.edu
› Author Affiliations
Rutgers University and the National Science Foundation (NSF, CAREER CHE-1650766) are gratefully acknowledged for support.
Further Information

Publication History

Received: 31 December 2019

Accepted after revision: 26 January 2020

Publication Date:
25 February 2020 (online)


Abstract

The direct nucleophilic addition to amides represents an attractive methodology in organic synthesis that tackles amidic resonance by ground-state destabilization. This approach has been recently accomplished with carbon, nitrogen and oxygen nucleophiles. Herein, we report an exceedingly mild method for the direct thioesterification and selenoesterification of amides by selective N–C(O) bond cleavage in the absence of transition metals. Acyclic amides undergo N–C(O) to S/Se–C(O) interconversion to give the corresponding thioesters and selenoesters in excellent yields at room temperature via a tetrahedral intermediate pathway (cf. an acyl metal).

Supporting Information

 
  • References

    • 3a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 3b Kaspar AA, Reichert JM. Drug Discov. Today 2013; 18: 807
    • 3c Marchildon K. Macromol. React. Eng. 2011; 5: 22

      For representative reviews on N–C bond activation, see:
    • 4a Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 4b Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
    • 4c Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
    • 4d Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
    • 4e Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
    • 4f Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2019; 25: 2663
    • 4g Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76

      For representative studies on amide bond twist, see:
    • 5a Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
    • 5b Meng G, Shi S, Lalancette R, Szostak R, Szostak M. J. Am. Chem. Soc. 2018; 140: 727
    • 5c Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2018; 20: 7771 ; and references cited therein

      For representative examples of acyl coupling, see:
    • 6a Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 6b Meng G, Szostak M. Org. Lett. 2015; 17: 4364
    • 6c Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335
    • 6d Meng G, Lei P, Szostak M. Org. Lett. 2017; 19: 2158
    • 6e Amani J, Alam R, Badir S, Molander GA. Org. Lett. 2017; 19: 2426
    • 6f Ni S, Zhang W, Mei H, Han J, Pan Y. Org. Lett. 2017; 19: 2536
    • 6g Buchspies J, Szostak M. Catalysts 2019; 9: 53 ; and references cited therein

      For leading references on ground-state destabilization, see:
    • 7a Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 14494
    • 7b Szostak R, Szostak M. Molecules 2019; 24: 274 ; and references cited therein

      For representative studies, see:
    • 8a Rh: Meng G, Szostak M. ACS Catal. 2017; 7: 7251
    • 8b Cr: Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864
    • 8c Co: Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
    • 8d Dorval C, Dubois E, Bourne-Branchu Y, Gosmini C, Danoun G. Adv. Synth. Catal. 2019; 361: 1777
  • 9 For a recent review on the activation of amides by tetrahedral intermediates, see: Li G, Szostak M. Chem. Rec. 2020; 20 DOI: in press; 10.1002/tcr.201900072.

    • For representative studies, see: C-nucleophiles:
    • 10a Li G, Szostak M. Chem. Eur. J. 2020; 26: 611

    • N-nucleophiles:
    • 10b Li G, Ji CL, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
    • 10c Li G, Szostak M. Nat. Commun. 2018; 9: 4165
    • 10d Rahman MM, Li G, Szostak M. J. Org. Chem. 2019; 84: 12091
    • 10e Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
    • 10f Ghosh T, Jana S, Dash J. Org. Lett. 2019; 21: 669

    • O-nucleophiles:
    • 10g Li G, Lei P, Szostak M. Org. Lett. 2018; 20: 5622
    • 10h Wu H, Guo W, Stelck D, Li Y, Liu C, Zeng Z. Chem. Eur. J. 2018; 24: 3444
    • 10i Ye D, Liu Z, Chen H, Sessler JL, Lei C. Org. Lett. 2019; 21: 6888

      For a leading review on thioesters, see:
    • 11a Hirschbeck V, Gehrtz PH, Fleischer I. Chem. Eur. J. 2018; 24: 7092
    • 11b For the classic Liebeskind–Srogl synthesis, see: Liebeskind L, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260

    • For selected recent studies, see:
    • 11c Hirschbeck V, Böldl M, Gehrtz PH, Fleischer I. Org. Lett. 2019; 21: 2578
    • 11d Gehrtz PH, Kathe P, Fleischer I. Chem. Eur. J. 2018; 24: 8774
    • 11e Burhardt MN, Taaning RH, Skrydstrup T. Org. Lett. 2013; 15: 948
    • 11f Burhardt MN, Ahlburg A, Skrydstrup T. J. Org. Chem. 2014; 79: 11830
    • 11g Zhang Y, Ji P, Hu W, Wei Y, Huang H, Wang W. Chem. Eur. J. 2019; 25: 8225
    • 11h Ishitobi K, Muto K, Yamaguchi J. ACS Catal. 2019; 9: 11685

      For leading references on selenoesters, see:
    • 12a Temperini A, Piazzolla F, Minuti L, Curini M, Siciliano C. J. Org. Chem. 2017; 82: 4588
    • 12b Durek T, Alewood PF. Angew. Chem. Int. Ed. 2011; 50: 12042
    • 12c Boger DL, Mathvink RJ. J. Am. Chem. Soc. 1990; 112: 4003
  • 13 For decarbonylative thiolation of N-acyl-glutarimides, see: Lee SC, Liao HH, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608

    • For decarbonylative thiolation of thioesters, see:
    • 14a Liu C, Szostak M. Chem. Commun. 2018; 54: 2130
    • 14b Ichiishi N, Malapit CA, Wozniak L, Sanford M. Org. Lett. 2018; 20: 44
    • 14c Ishitobi K, Isshiki R, Asahara KK, Lim C, Muto K, Yamaguchi J. Chem. Lett. 2018; 47: 756
  • 15 For a further pertinent review, see: Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596