Synthesis 2020; 52(08): 1287-1300
DOI: 10.1055/s-0039-1690050
paper
© Georg Thieme Verlag Stuttgart · New York

Oligoether-Substituted Derivatives of Carbon-Rich 1,4,7,10,13,16-Hexaethynyltribenzo[a,e,i]cyclododeca-5,11,17-triyne (C36H12) and 1,4,9,12-Tetrakis(ethynyl)dibenzo[a,g]cyclododeca-5,7,13,15-tetrayne (C28H8): Potential Precursors to the Circular [6]Phenylene (‘Antikekulene’) Frame

Uwe Dahlmann
,
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, USA   Email: kpcv@berkeley.edu
› Author Affiliations
This work was enabled by the NSF (CHE 0907800).
Further Information

Publication History

Received: 14 December 2019

Accepted: 07 January 2020

Publication Date:
28 January 2020 (online)


Abstract

The title compounds, in which the terminal alkyne functions are adorned with -CH2OCH2CH2OCH2CH2OCH2CH3 or -p-C6H4OCH2CH2 OCH2CH2OCH3 substituents, were synthesized. The strategies for their preparation relied on prior art and involved the use of Sonogashira alkynylations of appropriate haloarenes, Stephens–Castro cyclizations of 1,2,4-trialkynyl-3-iodobenzenes, and Hay oxidative couplings of 1,2,3,4-tetralkynylbenzenes. The targets form yellow materials, exhibiting yellow-green fluorescence, and they are very soluble in polar solvents, but only sparingly so in nonpolar media. Attempts to convert them into the antikekulene frame through CpCo(CO)2-catalyzed (co)-cyclizations failed.

Supporting Information

 
  • References

    • 2a Eickmeier C, Junga H, Matzger AJ, Scherhag F, Shim M, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1997; 36: 2103
    • 2b For the X-ray structure of 2a, see: Matzger AJ, Shim M, Vollhardt KP. C. Chem. Commun. 1999; 1871
    • 2c For calculated structures of 2a and 22a, see: Juselius J, Sundholm D. Phys. Chem. Chem. Phys. 2001; 3: 2433
    • 2d For 1H NMR evidence of 1a, see: Fonari A, Röder JC, Shen H, Timofeeva TV, Vollhardt KP. C. Synlett 2014; 25: 2429
    • 2e The name ‘antikekulene’ was coined by us to highlight the juxtaposition of 2a to the all-aromatic and -benzenoid hydrocarbon kekulene: Diercks R, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1986; 25: 266
  • 3 For a related attempt to synthesize an isomer of the circular [8]phenylene framework see: Miljanić O. Š, Holmes D, Vollhardt KP. C. Org. Lett. 2005; 7: 4001
  • 4 For a review, see: Miljanič O. Š, Vollhardt KP. C. In Carbon-Rich Compounds: From Molecules to Materials. Haley MM, Tykwinski RR. Wiley-VCH; Weinheim: 2006: 140

    • For selected illustrative computational assessments, see:
    • 5a Gribanova TN, Minyaev RM, Minkin VI. Russ. J. Org. Chem. 2016; 52: 268
    • 5b Dickens TK, Mallion RB. Chem. Phys. Lett. 2011; 517: 98
    • 5c Aihara J. J. Phys. Chem. A 2008; 112: 4382
    • 5d Schulman JM, Disch RL. J. Phys. Chem. A 2007; 111: 10010 ; and references cited therein
    • 5e Kataoka M. J. Tohoku Pharm. Univ. 2006; 53: 125

      For some recent reports featuring 6a and analogues as substituents, see:
    • 6a Kang S, Lee M, Lee D. J. Am. Chem. Soc. 2019; 141: 5980
    • 6b Hayashi K, Miyaoka Y, Ohishi Y, Uchida T, Iwamura M, Nozaki K, Inouye M. Chem. Eur. J. 2018; 24: 14613
    • 6c Ikai T, Yoshida T, Awata S, Wada Y, Maeda K, Mizuno M, Swager TM. ACS Macro Lett. 2018; 7: 364
    • 6d Liu X, Yuan Y, Bo S, Li Y, Yang Z, Zhou X, Chen S, Jiang Z.-X. Eur. J. Org. Chem. 2017; 4461
    • 6e Hayashi K, Inouye M. Eur. J. Org. Chem. 2017; 4334

      For some recent reports featuring 6b and analogues as substituents, see:
    • 7a Herkert L, Droste J, Kartha KK, Korevaar PA, de Greef TF. A, Hansen MR, Fernández G. Angew. Chem. Int. Ed. 2019; 58: 11344
    • 7b Kasthuri S, Kumar S, Raviteja S, Ramakrishna B, Maji S, Veeraiah N, Venkatramaiah N. Appl. Surf. Sci. 2019; 481: 1018
    • 7c Tang S.-X, Wang N, Xu X.-D, Feng S. New J. Chem. 2019; 43: 6461
    • 7d Lechner B.-D, Biehl P, Ebert H, Werner S, Meister A, Hause G, Bacia K, Tschierske C, Blume A. J. Phys. Chem. B 2018; 122: 10861
    • 7e Sagara Y, Seki A, Kim Y, Tamaoki N. J. Mater. Chem. C 2018; 6: 8453
    • 7f Pan D, Zhong X, Zhao W, Yu Z, Yang Z, Wang D, Cao H, He W. Tetrahedron 2018; 74: 2677
  • 8 Made as in: Zhang X, Chen Z, Würthner F. J. Am. Chem. Soc. 2007; 129: 4886 ; with a slight improvement in yield and added complementary characterization (see experimental section and SI)

    • Prepared by adaptation of the routes described in
    • 9a Mawatari Y, Yoshida Y, Motoshige A, Motoshige R, Sasaki T, Tabata M. Eur. Polym. J. 2014; 57: 213
    • 9b Aya S, Obara H, Pochiecha D, Araoka F, Okano K, Ishikawa K, Gorecka E, Yamashita T, Takezoe H. Adv. Mater. 2014; 26: 1918
    • 9c He X, Cheng EC.-C, Zhu N, Yam VW.-W. Chem. Commun. 2009; 4016 ; see experimental section and SI
  • 10 Collins I, Suschitzky H. J. Chem. Soc. C 1969; 2337

    • See also:
    • 11a Holmes D, Lee SY, Lotz SD, Nguyen SC, Schaller GR, Schmidt-Radde RH, Vollhardt KP. C. Synthesis 2015; 47: 2038
    • 11b Eickmeier C, Holmes D, Junga H, Matzger AJ, Scherhag F, Shim M, Vollhardt KP. C. Angew. Chem. Int. Ed. 1999; 38: 800
  • 12 Huynh C, Linstrumelle G. Tetrahedron 1988; 44: 6337
  • 13 Inspired by: Bong DT.-Y, Gentric L, Holmes D, Matzger AJ, Scherhag F, Vollhardt KP. C. Chem. Commun. 2002; 278
    • 14a For a compilation of recent synthetic methods to tribenzo[a,e,i]cyclododeca-5,11,17-triyne, see: Baxter PN. W, Karmazin L, De Cian A, Varnek A, Gisselbrecht J.-P, Strub J.-M, Cianferani S. Eur. J. Org. Chem. 2017; 4625
    • 14b For a review, see: Tobe Y, Umeda R. In Science of Synthesis, Vol. 43. Hopf H. Thieme; Stuttgart: 2008: 393
    • 15a Campbell ID, Eglinton G, Henderson W, Raphael RA. Chem. Commun. 1966; 87
    • 15b Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313

      For examples of noticeable fluorescence of closely related oligoalkynes, see:
    • 16a Takahashi N, Kato S.-i, Yamaji M, Ueno M, Iwabuchi R, Shimizu Y, Nitani M, Ie Y, Aso Y, Yamanobe T, Uehara H, Nakamura Y. J. Org. Chem. 2017; 82: 8882
    • 16b Ref. 14a.
    • 16c Dickson-Karn NM, Olson CM, Leu WC. W, Hartley CS. J. Phys. Org. Chem. 2014; 27: 661
    • 16d Chu M, Scioneaux AN, Hartley CS. J. Org. Chem. 2014; 79: 9009
    • 16e Shigemitsu H, Hisaki I, Kometani E, Yasumiya D, Sakamoto Y, Osaka K, Thakur TS, Saeki A, Seki S, Kimura F, Tohnai N, Miyata M. Chem. Eur. J. 2013; 19: 15366
    • 16f Hisaki I, Manabe N, Osaka K, Saeki A, Seki S, Tohnai N, Miyata M. Bull. Chem. Soc. Jpn. 2014; 87: 323
    • 16g Gross DE, Zang L, Moore JS. Pure Appl. Chem. 2012; 84: 869
    • 16h Leu WC. W, Fritz AE, Digianantonio KM, Hartley CS. J. Org. Chem. 2012; 77: 2285
    • 16i Takeda T, Fix AG, Haley MM. Org. Lett. 2010; 12: 3824
    • 16j Kawase T. Synlett 2007; 2609
    • 16k Zimmermann B, Baranović G, Štefanić Z, Rožman M. J. Mol. Struct. 2006; 794: 115
    • 16l Tovar JD, Jux N, Jarrosson T, Khan SI, Rubin Y. J. Org. Chem. 1997; 62: 3432
    • 16m Grubbs RH, Kratz D. Chem. Ber. 1993; 126: 149
    • 16n Janecka-Styrcz K, Lipiński J, Ruziewicz Z. J. Lumin. 1978; 17: 83
    • 17a Hay AS. J. Org. Chem. 1962; 27: 3320

    • See also:
    • 17b Behr OM, Eglinton G, Galbraith AR, Raphael RA. J. Chem. Soc. 1960; 3614
    • 17c Zhou Q, Carroll PJ, Swager TM. J. Org. Chem. 1994; 59: 1294
    • 18a Mohler DL, Vollhardt KP. C. Adv. Strain Org. Chem. 1996; 5: 121
    • 18b Vollhardt KP. C. Pure Appl. Chem. 1993; 65: 153
    • 19a Fritch JR, Vollhardt KP. C. Isr. J. Chem. 1985; 26: 131
    • 19b Fritch JR, Vollhardt KP. C, Thompson MR, Day VW. J. Am. Chem. Soc. 1979; 101: 2768
    • 19c Sakurai H, Hayashi J. J. Organomet. Chem. 1974; 70: 85
  • 20 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals, 6th ed. Butterworth-Heinemann; Oxford: 2009