Synthesis 2019; 51(20): 3901-3907
DOI: 10.1055/s-0039-1690017
paper
© Georg Thieme Verlag Stuttgart · New York

Construction of Esters through Sulfuryl Fluoride (SO2F2) Mediated Dehydrative Coupling of Carboxylic Acids with Alcohols at Room Temperature

Shi-Meng Wang
a  State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
,
Njud S. Alharbi
b  Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
,
Hua-Li Qin
a  State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. of China   Email: qinhuali@whut.edu.cn
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (Grant No. 21772150), the Wuhan Applied Fundamental Research Plan of Wuhan Science and Technology Bureau (Grant No. 2017060201010216), the 111 Project (No. B18038) and Wuhan University of Technology for the financial support.
Further Information

Publication History

Received: 06 June 2019

Accepted after revision: 11 July 2019

Publication Date:
29 July 2019 (online)

Abstract

A facile method for the construction of esters through dehydrative coupling of carboxylic acids with alcohols is developed. The reactions are mediated by sulfuryl fluoride (SO2F2) at room temperature and proceed with high efficiency. The method has several advantages including broad substrate scope, mild conditions, excellent functional group compatibility and affords high yields, even on gram scale.

Supporting Information

 
  • References

    • 2a Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 2b Xin Z, Gogsig TM, Lindhardt AT, Skrydstrup T. Org. Lett. 2012; 14: 284
    • 2c Zhang H, Shi R, Ding A, Lu L, Chen B, Lei A. Angew. Chem. Int. Ed. 2012; 124: 12710
    • 3a Ekoue-Kovi K, Wolf C. Chem. Eur. J. 2008; 14: 6302
    • 3b Xu B, Liu X, Haubrich J, Friend CM. Nat. Chem. 2010; 2: 61
    • 3c Travis BR, Sivakumar M, Hollist GO, Borhan B. Org. Lett. 2003; 5: 1031
    • 3d Hashmi AS. K, Lothschuetz C, Ackermann M, Doepp R, Anantharaman S, Marchetti B, Bertagnolli H, Rominger F. Chem. Eur. J. 2010; 16: 8012
    • 4a Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ. Science 2006; 311: 362
    • 4b Sigman MS, Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 5a Xu B, Liu X, Haubrich J, Madix RJ, Friend CM. Angew. Chem. Int. Ed. 2009; 48: 4206
    • 5b Oliveira RL, Kiyohara PK, Rossi LM. Green Chem. 2009; 11: 1366
    • 5c Miyamura H, Yasukawa T, Kobayashi S. Green Chem. 2010; 12: 776
    • 6a Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2005; 127: 10840
    • 6b Owston NA, Parker AJ, Williams JM. J. Chem. Commun. 2008; 624
    • 6c Gunanathan C, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2009; 131: 3146
    • 6d Gunanathan C, Milstein D. Science 2013; 341: 1229712
  • 7 Zweifel T, Naubron JV, Grútzmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
    • 8a Izumi A, Obora Y, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2006; 47: 9199
    • 8b Yamamoto N, Obora Y, Ishii Y. J. Org. Chem. 2011; 76: 2937
    • 9a Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A. Angew. Chem. Int. Ed. 2011; 50: 5144
    • 9b Liu C, Tang S, Lei A. Chem. Commun. 2013; 49: 1324
    • 9c Gowrisankar S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 5139
  • 11 Sulbaek Andersen MP, Blake DR, Rowland FS, Hurley MD, Wallington TJ. Environ. Sci. Technol. 2009; 43: 1067
    • 12a Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 12b Dong J, Sharpless KB, Kwisnek L, Oakdale JS, Fokin VV. Angew. Chem. Int. Ed. 2014; 53: 9466
    • 12c Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
    • 12d Baranczak A, Liu Y, Connelly S, Han Du W.-G, Greiner ER, Genereux JC, Wiseman RL, Eisele YS, Bradbury NC, Dong J, Noodleman L, Sharpless KB, Wilson IA, Encalada SE, Kelly JW. J. Am. Chem. Soc. 2015; 137: 7404
    • 12e Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET, Sharpless KB, Wilson IA, Kelly JW. J. Am. Chem. Soc. 2018; 140: 200
    • 13a Schimler SD, Cismesia MA, Hanley PS, Froese RD. J, Jansma MJ, Bland DC, Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
    • 13b Epifanov M, Foth PJ, Gu F, Barrillon C, Kanani SS, Higman CS, Hein JE, Sammis GM. J. Am. Chem. Soc. 2018; 140: 16464
    • 13c Gurjar J, Bater J, Fokin VV. Chem. Eur. J. 2019; 25: 1906
    • 13d Zha G.-F, Fang W.-Y, Li Y.-G, Leng J, Chen X, Qin H.-L. J. Am. Chem. Soc. 2018; 140: 17666
    • 13e Zha G.-F, Fang W.-Y, Leng J, Qin H.-L. Adv. Synth. Catal. 2019; 361: 2262
    • 13f Fang W.-Y, Qin H.-L. J. Org. Chem. 2019; 84: 5803
  • 14 Wang S.-M, Zhao C, Zhang X, Qin H.-L. Org. Biomol. Chem. 2019; 17: 4087
    • 15a Wang X.-Y, Leng J, Wang S.-M, Asiri AM, Marwani HM, Qin H.-L. Tetrahedron Lett. 2017; 58: 2340
    • 15b Fang W.-Y, Leng J, Qin H.-L. Chem. Asian J. 2017; 12: 2323
    • 15c Fang W.-Y, Huang Y.-M, Leng J, Qin H.-L. Asian J. Org. Chem. 2018; 7: 751
    • 15d Zhao C, Fang W.-Y, Rakesh KP, Qin H.-L. Org. Chem. Front. 2018; 5: 1835
    • 15e Revathi L, Ravindar L, Leng J, Rakesh KP, Qin H.-L. Asian J. Org. Chem. 2018; 7: 662
    • 15f Zhao C, Zha G.-F, Fang W.-Y, Rakesh KP, Qin H.-L. Eur. J. Org. Chem. 2018; 1801
    • 15g Lekkala R, Lekkala R, Moku B, Qin H.-L. Org. Chem. Front. 2019; 6: 796
    • 15h Zhang X, Rakesh KP, Qin H.-L. Chem. Commun. 2019; 55: 2845
    • 15i Jiang Y, Sun B, Fang W.-Y, Qin H.-L. Eur. J. Org. Chem. 2019; 3190
    • 15j Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin H.-L. Beilstein J. Org. Chem. 2019; 15: 976
  • 16 Shang R, Fu Y, Li J.-B, Zhang S.-L, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 5738
  • 17 Yoshino T, Imoria S, Togo H. Tetrahedron 2006; 62: 1309
  • 18 Joshi-Pangu A, Wang C.-Y, Biscoe MR. J. Am. Chem. Soc. 2011; 133: 8478
  • 19 Zhao Y, Jin L, Li P, Lei A. J. Am. Chem. Soc. 2008; 130: 9429
  • 20 Chen Z, Wen Y, Fu Y, Chen H, Ye M, Luo G. Synlett 2017; 28: 981
  • 21 Zhou H, Mukherjee P, Liu R, Evrard E, Wang D, Humphrey JM, Butler TW, Hoth LR, Sperry JB, Sakata SK, Helal CJ, am Ende CW. Org. Lett. 2018; 20: 812
  • 22 Denmark SE, Butler CR. Org. Lett. 2006; 8: 63
  • 23 Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
  • 24 Watson DA, Fan X, Buchwald SL. J. Org. Chem. 2008; 73: 7096
  • 25 Wybon CC. D, Mensch C, Hollanders K, Gadais C, Herrebout WA, Ballet S, Maes BU. W. ACS Catal. 2018; 8: 203
  • 26 Moria N, Togo H. Tetrahedron 2005; 61: 5915
  • 27 Liu H.-X, Dang Y.-Q, Yuan Y.-F, Xu Z.-F, Qiu S.-X, Tan H.-B. Org. Lett. 2016; 18: 5584
  • 28 Lipshutz BH, Ghorai S, Leong WW. Y. J. Org. Chem. 2009; 74: 2854
  • 29 Stevens BD, Nelson SG. J. Org. Chem. 2005; 70: 4375
  • 30 Ikeda T, Zhang Z, Motoyama Y. Adv. Synth. Catal. 2019; 361: 673
  • 31 Ohshima T, Iwasaki T, Maegawa Y, Yoshiyama A, Mashima K. J. Am. Chem. Soc. 2008; 130: 2944
  • 32 Zhou J, Jin C, Li X, Su W. RSC Adv. 2015; 5: 7232
  • 33 Weng S.-S, Chen F.-K, Ke C.-S. Synth. Commun. 2013; 43: 2615
  • 34 Samanta RC, Studer A. Org. Chem. Front. 2014; 1: 936