Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(04): 537-543
DOI: 10.1055/s-0039-1690016
DOI: 10.1055/s-0039-1690016
paper
Solid-Phase Zincke Reaction for the Synthesis of Peptide-4,4′-bipyridinium Conjugates
This work has received financial support from the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) (CTQ2016-75629-P), Agencia Estatal de Investigación and FEDER (CTQ2017-89166-R), and the Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia (ED431C 2018/39).Further Information
Publication History
Received: 29 May 2019
Accepted after revision: 16 July 2019
Publication Date:
30 July 2019 (online)
Published as part of the Bürgenstock Special Section 2019 Future Stars in Organic Chemistry
Abstract
We present herein the development of a new synthetic strategy for the conjugation of 4,4′-bipyridinium derivatives into peptide scaffolds. The methodology, based on the development of a solid-phase version of the Zincke reaction between activated pyridinium salts and amines, is able to produce the desired conjugates in a straightforward fashion, with the bipyridinium units attached at the N-terminus of peptides or at Lys side chains of N-terminal acetylated peptides.
Key words
peptide-based conjugates - viologens - Zincke reaction - solid phase peptide synthesis (SPPS) - synthetic methodologySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690016.
- Supporting Information
-
References
- 1 Both authors contributed equally to this work.
- 2a Vinogradov AA, Yin Y, Suga H. J. Am. Chem. Soc. 2019; 141: 4167
- 2b Torres MD. T, Sothiselvam S, Lu TK, de la Fuente-Núñez C. J. Mol. Biol. 2019; 431: in press; DOI: 10.1016/j.jmb.2018.12.015
- 3a Liu Q, Wang J, Boyd BJ. Talanta 2015; 136: 114
- 3b González-Vera JA. Chem. Soc. Rev. 2012; 41: 1652
- 3c Pazos E, Vázquez O, Mascareñas JL, Vázquez ME. Chem. Soc. Rev. 2009; 38: 3348
- 4a Li J, Xing R, Bai S, Yan X. Soft Matter 2019; 15: 1704
- 4b Singh N, Kumar M, Miravet JF, Ulijn RV, Escuder B. Chem. Eur. J. 2017; 23: 981
- 5a Ulijn RV, Jerala R. Chem. Soc. Rev. 2018; 47: 3391
- 5b Lapenta F, Aupič J, Strmšek Ž, Jerala R. Chem. Soc. Rev. 2018; 47: 3530
- 5c Hendricks MP, Sato K, Palmer LC, Stupp SI. Acc. Chem. Res. 2017; 50: 2440
- 6 Panda SS, Katz HE, Tovar JD. Chem. Soc. Rev. 2018; 47: 3640
- 7 Hermanson GT. Bioconjugate Techniques, 3rd ed. Academic Press; San Diego: 2013
- 8 Lang K, Chin JW. ACS Chem. Biol. 2014; 9: 16
- 9 deGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
- 10a Yu G, Jie K, Huang F. Chem. Rev. 2015; 115: 7240
- 10b Brinkmann J, Wasserberg D, Jonkheijm P. Eur. Polym. J. 2016; 83: 380
- 11a Klajn R, Stoddart JF, Grzybowski BA. Chem. Soc. Rev. 2010; 39: 2203
- 11b Pazos E, Novo P, Peinador C, Kaifer AE, García MD. Angew. Chem. Int. Ed. 2019; 58: 403
- 12 García MD, Alvariño C, López-Vidal EM, Rama T, Peinador C, Quintela JM. Inorg. Chim. Acta 2014; 417: 27
- 13a Pazos E, Goličnik M, Mascareñas JL, Vazquez ME. Chem. Commun. 2012; 48: 9534
- 13b Penas C, Pazos E, Mascareñas JL, Vázquez ME. J. Am. Chem. Soc. 2013; 135: 3812
- 13c Iglesias P, Penas C, Barral-Cagiao L, Pazos E, Costoya JA. Sci. Rep. 2019; 9: 7117
- 14a Zincke T. Justus Liebigs Ann. Chem. 1904; 330: 361
- 14b Zincke T, Heuser G, Möller W. Justus Liebigs Ann. Chem. 1904; 333: 296
- 14c Zincke T, Wurker W. Justus Liebigs Ann. Chem. 1905; 338: 107
- 15 Vanderwal CD. J. Org. Chem. 2011; 76: 9555
- 16a Blanco V, García MD, Terenzi A, Pía E, Fernandez-Mato A, Peinador C, Quintela JM. Chem. Eur. J. 2010; 16: 12373
- 16b Rama T, López-Vidal EM, García MD, Peinador C, Quintela JM. Chem. Eur. J. 2015; 21: 9482
- 16c Rama T, Alvariño C, Domarco O, Platas-Iglesias C, Blanco V, García MD, Peinador C, Quintela JM. Inorg. Chem. 2016; 55: 2290
- 16d Domarco O, Neira I, Rama T, Blanco-Gómez A, García MD, Peinador C, Quintela JM. Org. Biomol. Chem. 2017; 15: 3594
- 16e Blanco-Gómez A, Rama T, Domarco O, Neira I, Blanco V, Quintela JM, García MD, Peinador C. Dalton Trans. 2017; 46: 15671
- 16f Rama T, Blanco-Gómez A, Neira I, Domarco O, García MD, Quintela JM, Peinador C. Chem. Eur. J. 2017; 23: 16743
- 16g Domarco O, Kieler C, Pirker C, Dinhof C, Englinger B, Reisecker JM, Timelthaler G, García MD, Peinador C, Keppler BK, Berger W, Terenzi A. Angew. Chem. Int. Ed. 2019; 58: 8007
- 17 Das G, Skorjanc T, Sharma SK, Gándara F, Lusi M, Shankar Rao DS, Vimala S, Krishna Prasad S, Raya J, Han DS, Jagannathan R, Olsen J.-C, Trabolsi A. J. Am. Chem. Soc. 2017; 139: 9558
- 18a Baba N, Oda J, Inouye Y. Bull. Inst. Chem. Res., Kyoto Univ. 1980; 58: 379
- 18b Prokai-Tatrai K, Perjési P, Zharikova AD, Li X, Prokai L. Bioorg. Med. Chem. Lett. 2002; 12: 2171
- 19 Monk PM. S. The Viologens, Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine. Wiley; Chichester: 1998
- 20 Park JW, Kim Y, Lee C. Bull. Korean Chem. Soc. 1994; 15: 896
- 21 Isidro-Llobet A, Alvarez M, Albericio F. Chem. Rev. 2009; 109: 2455
- 22a García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F. J. Comb. Chem. 2006; 8: 213
- 22b García-Ramos Y, Paradís-Bas M, Tulla-Puche J, Albericio F. J. Peptide Sci. 2010; 16: 675
- 23a Pazos E, Jiménez-Balsa A, Mascareñas JL, Vázquez ME. Chem. Sci. 2011; 2: 1984
- 23b Pazos E, Pérez M, Gutiérrez-de-Terán H, Orzáez M, Guevara T, Mascareñas JL, Vázquez ME. Org. Biomol. Chem. 2011; 9: 7629