Synthesis
DOI: 10.1055/s-0039-1690010
special topic
© Georg Thieme Verlag Stuttgart · New York

Leaving Group Ability in Nucleophilic Aromatic Amination by Sodium Hydride–Lithium Iodide Composite

Jia Hao Pang
a  Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: shunsuke@ntu.edu.sg
,
Derek Yiren Ong
a  Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: shunsuke@ntu.edu.sg
,
Kohei Watanabe
b  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: takita@mol.f.u-tokyo.ac.jp
,
Ryo Takita
b  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: takita@mol.f.u-tokyo.ac.jp
,
a  Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: shunsuke@ntu.edu.sg
› Author Affiliations
This work was supported by funding from Nanyang Technological University (NTU) (for S.C.), the Singapore Ministry of Education (Academic Research Fund Tier 1: RG10/17 for S.C.), and Japan Society for the Promotion of Science [Grant-in-Aid for Scientific Research (C) (19K0662)], Takeda Science Foundation, The FUGAKU Trust for Medicinal Research, and Uehara Memorial Foundation (for R.T.).
Further Information

Publication History

Received: 30 June 2019

Accepted after revision: 16 July 2019

Publication Date:
24 July 2019 (eFirst)

Published as part of the Special Topic Alkali base mediated coupling reactions without added transition metal

Abstract

The methoxy group is generally considered as a poor leaving group for nucleophilic substitution reactions. This work verified the superior ability of the methoxy group in nucleophilic amination of arenes mediated by the sodium hydride and lithium iodide through experimental and computational approaches.

Supporting Information

 
  • References

  • 2 Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
  • 3 For vicarious nucleophilic substitution, see: Błaziak K, Danikiewicz W, Mąkosza M. J. Am. Chem. Soc. 2016; 138: 7276; and references therein
  • 4 For radical-nucleophilic aromatic substitution (SRN1), see: Rossi RA, Pierini AB, Peñeñory AB. Chem. Rev. 2003; 103: 71
  • 5 For base-promoted homolytic aromatic substitution, see: Studer A, Curran DP. Nat. Chem. 2014; 6: 765
  • 6 For nucleophilic aromatic substitution via SN1-type mechanism, see: Crespi S, Protti S, Fagnoni M. J. Org. Chem. 2016; 81: 9612
  • 7 Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
  • 8 For our review on cSNAr reactions, see: Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: in press; DOI: 10.1002/anie.201902216
    • 9a Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
    • 9b Pang JH, Kaga A, Chiba S. Chem. Commun. 2018; 54: 10324

      For Ni-catalyzed amination of methoxyarenes, see:
    • 10a Tobisu M, Shimasaki T, Chatani N. Chem. Lett. 2009; 38: 710
    • 10b Tobisu M, Yasutome A, Yamakawa K, Shimasaki T, Chatani N. Tetrahedron 2012; 68: 5157
  • 11 For amination of methoxyarenes via their cation radical intermediates generated under organic photoredox catalysis, see: Tay NE. S, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 16100
  • 12 For nucleophilic amination of aryl iodides with magnesium amides via single-electron-transfer mechanism, see: Kiriyama K, Okkura K, Tamakuni F, Shirakawa E. Chem. Eur. J. 2018; 24: 4519
  • 13 Ong DY, Tejo C, Xu K, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 1840
  • 14 Masuya Y, Kawashima Y, Kodama T, Chatani N, Tobisu M. Synlett 2019; 30: in press; DOI: 10.1055/s-0037-1611974
  • 15 We assumed that counter ion metathesis between NaH and LiI allows for generation of activated form of NaH, that possesses enhanced basicity to promote the present process. Our preliminary work on the materials characterization, see: Hong Z, Ong DY, Muduli SK, Too PC, Chan GH, Tnay YL, Chiba S, Nishiyama Y, Hirao H, Soo HS. Chem. Eur. J. 2016; 22: 7108
  • 16 Pérez I, Sestelo JP, Sarandeses LA. J. Am. Chem. Soc. 2001; 123: 4155
  • 17 Li J.-H, Liu W.-J. Org. Lett. 2004; 6: 2809
  • 18 Kalvet I, Magni G, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 1581
  • 19 Crisenza GE. M, Dauncey EM, Bower JF. Org. Biomol. Chem. 2016; 14: 5820
  • 20 Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T. J. Org. Chem. 2009; 74: 1971
  • 21 Burgos CH, Barder TE, Huang X, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 4321
  • 22 Liu X, Zhang S. Synlett 2011; 268
  • 23 Yong F.-F, Teo Y.-C, Yan Y.-K, Chua G.-L. Synlett 2012; 23: 101
  • 24 Girard SA, Hu X, Knauber T, Zhou F, Simon M.-O, Deng G.-J, Li C.-J. Org. Lett. 2012; 14: 5606
  • 25 Yasui K, Higashino M, Chatani N, Tobisu M. Synlett 2017; 28: 2569
  • 26 Gauchot V, Lee A.-L. Chem. Commun. 2016; 52: 10163
  • 27 Cao Q, Howard JL, Wheatley E, Browne DL. Angew. Chem. Int. Ed. 2018; 57: 11339
  • 28 Lim C.-H, Kudisch M, Liu B, Miyake GM. J. Am. Chem. Soc. 2018; 140: 7667
  • 29 Zhang J, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
  • 30 Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495