Synthesis 2019; 51(12): 2553-2563
DOI: 10.1055/s-0037-1612419
paper
© Georg Thieme Verlag Stuttgart · New York

Diethylaminosulfur Trifluoride (DAST)-Mediated Intramolecular Benzannulation of o-Allylchalcones: Synthesis of 3-Fluorotetralins

a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
b   Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan   Email: mychang@kmu.edu.tw
,
Han-Yu Chen
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
,
Yu-Lin Tsai
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
› Author Affiliations
The authors would like to thank the Ministry of Science and Technology, Taiwan for its financial support (MOST 106-2628-M-037-001-MY3).
Further Information

Publication History

Received: 01 February 2019

Accepted after revision: 01 March 2019

Publication Date:
01 April 2019 (online)


Abstract

A concise route for the synthesis of 3-fluorotetralines is described, including: (i) NaBH4-mediated reduction of oxygenated o-allylchalcones and (ii) sequential DAST-mediated intramolecular annulation of the resulting alkenols. A plausible mechanism is proposed and discussed. This protocol provides highly effective regio- and stereocontrolled allyl-enone cross-coupling to construct two stereocenters and one E-configured styryl group.

Supporting Information

 
  • References

  • 1 Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
  • 2 Singh RP, Shreeve JM. Synthesis 2002; 2561
  • 3 Ferreira SB. Synlett 2006; 1130
  • 4 Ferret H, Dechamps I, Pardo D.-G, Hijfte LV, Cossy J. ARKIVOC 2010; (viii): 126
    • 5a Dawood KM. Tetrahedron 2004; 60: 1435
    • 5b Fustero S, Sedgwick DM, Román R, Barrio P. Chem. Commun. 2018; 54: 9706
  • 6 Rozen S. Acc. Chem. Res. 2005; 38: 803
  • 7 Nyffeler PT, Duron SG, Byrkart MD, Vincent SP, Wong CH. Angew. Chem. Int. Ed. 2005; 44: 192

    • Selected books on organofluorine compounds, see:
    • 8a Filler R, Kobayashi Y. Biomedicinal Aspects of Fluorine Chemistry . Elsevier; Amsterdam: 1982
    • 8b Welch JT, Eswarakrishan S. Fluorine in Bioorganic Chemistry . Wiley; New York: 1991
    • 8c Soloshonok VA. Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenge and Biomedical Targets. Wiley; New York: 1999
  • 9 For fluoro-containing agrochemicals, see: Lang RW. Fluorinated Agrochemicals . In Chemistry of Organofluorine Compounds II, A Critical Review, ACS Monograph Series #187. Hudlicky M, Pavlath AE. American Chemical Society; Washington DC: 1995

    • Selected examples on synthesis of mono-fluorinated linear skeletons; for benzylic fluorides, see:
    • 10a Cresswell AL, Davies SG, Lee JA, Roberts PM, Russell AJ, Thomson JE, Tyte MJ. Org. Lett. 2010; 12: 2936

    • For fluorohydrins, see:
    • 10b Islas-Gonzalez G, Puigjaner C, Vidal-Ferran A, Moyano A, Riera A, Pericas MA. Tetrahedron Lett. 2004; 45: 6337

    • For fluorinated alkanes, see:
    • 10c Kim K.-Y, Kim BC, Lee HB, Shin H. J. Org. Chem. 2008; 73: 8106

      Selected examples for the synthesis of 3-fluoropyrrolidines, see:
    • 11a Kitamura T, Miyake A, Muta K, Oyamada J. J. Org. Chem. 2017; 82: 11721
    • 11b Cui J, Jia Q, Feng RZ, Liu S.-S, He T, Zhang C. Org. Lett. 2014; 16: 1442

      Selected examples for the synthesis of 4-fluorotetrahydropyrans, see:
    • 12a Al-Mutairi EH, Crosby SR, Darzi J, Harding JR, Hughes RA, King CD, Simpson TJ, Smith RW, Willis CL. Chem. Commun. 2001; 835
    • 12b Kataoka K, Ode Y, Matsumoto M, Nokami J. Tetrahedron 2006; 62: 2471
    • 12c Luo H.-Q, Hu X.-H, Loh T.-P. Tetrahedron Lett. 2010; 51: 1041

      Selected examples for the synthesis of 3- or 4-fluoropiperidines, see:
    • 13a Vardelle E, Martin-Mingot A, Jouannetaud M, Bachmann C, Marrot J, Thibaudeau S. J. Org. Chem. 2009; 74: 6025
    • 13b Kishi Y, Nagura H, Inagi S, Fuchigami T. Chem. Commun. 2008; 3876
    • 13c Okoromoba OE, Hammond GB, Xu B. Org. Lett. 2015; 17: 3975
  • 14 Yeh M.-CP, Liang C.-J, Huang T.-L, Hsu H.-J, Tsau Y.-S. J. Org. Chem. 2013; 78: 5521
  • 15 Nonn M, Kiss L, Haukka M, Fustero S, Fülöp F. Org. Lett. 2015; 17: 1074
  • 16 Huang HT, Lacy TC, Blachut B, Ortiz GX. Jr, Wang Q. Org. Lett. 2013; 15: 1818
  • 17 Yan T, Zhou B, Xue XS, Cheng JP. J. Org. Chem. 2016; 81: 9006
  • 18 Li F, Nie J, Wu JW, Zheng Y, Ma JA. J. Org. Chem. 2012; 77: 2398
  • 19 Probst N, Martin A, Désiré J, Mingot A, Marrot J, Blériot Y, Thibaudeau S. Org. Lett. 2017; 19: 1040
  • 20 Yang L, Ma Y, Song F, You J. Chem. Commun. 2014; 50: 3024
    • 21a Lázaro R, Román R, Sedgwick DM, Haufe G, Barrio P, Fustero S. Org. Lett. 2016; 18: 948
    • 21b Masson G, Rioton S, Pardo DG, Cossy J. Org. Lett. 2018; 20: 5019
    • 21c Rioton S, Orliac A, Antoun Z, Bidault R, Pardo DG, Cossy J. Org. Lett. 2015; 17: 2916
    • 21d Remete AM, Nonn M, Fustero S, Haukka M, Fülöp F, Kiss L. Eur. J. Org. Chem. 2018; 3735
  • 22 Review on o-carbonyl allylarenes, see: Hassam M, Taher A, Arnott GE, Green IR, van Otterlo WA. L. Chem. Rev. 2015; 115: 5462
  • 23 Chang M.-Y, Wu M.-H, Tai H.-Y. Org. Lett. 2012; 14: 3936
  • 24 Chang M.-Y, Wu M.-H. Tetrahedron 2013; 69: 129
  • 25 Chang M.-Y, Chan C.-K, Lin S.-Y. Tetrahedron 2013; 69: 1532
  • 26 Chang M.-Y, Wu M.-H, Chen Y.-L. Org. Lett. 2013; 15: 2822
  • 27 Chang M.-Y, Hsiao Y.-T, Lai K.-H. J. Org. Chem. 2018; 83: 14110
  • 28 Chan C.-K, Chan Y.-L, Tsai Y.-L, Chang M.-Y. Tetrahedron 2017; 73: 2074
  • 29 Hsueh N.-C, Chen H.-Y, Chang M.-Y. J. Org. Chem. 2017; 82: 13324
  • 30 Chan C.-K, Tsai Y.-L, Chang M.-Y. Org. Lett. 2017; 19: 1870
  • 31 Chang M.-Y, Tai H.-Y, Chen Y.-L, Hsu R.-T. Tetrahedron 2012; 68: 7941
  • 32 CCDC 1861178 (4g) and 1861180 (5a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 33a Pettit GR, Singh SB, Boyd MR, Hamel E, Pettit RK, Schmidt JM, Hogan F. J. Med. Chem. 1995; 38: 1666
    • 33b Gill RK, Kaur R, Kaur G, Rawal RK, Shah AK, Bariwal J. Curr. Org. Chem. 2014; 18: 2462
    • 33c O’Boyle NM, Carr M, Greene LM, Bergin O, Nathwani SM, McCabe T, Lloyd DG, Zisterer DM, Meegan M. J. Med. Chem. 2010; 53: 8569
  • 34 Qin Y, Lv J, Luo S, Cheng J.-P. Org. Lett. 2014; 16: 5032