Synthesis 2019; 51(09): 1961-1968
DOI: 10.1055/s-0037-1612084
© Georg Thieme Verlag Stuttgart · New York

Transformation of the Carboxyl Group of an Amino Acid to Variously Substituted Imidazoles through a Davidson-Type Heterocyclization

Jim Küppers
a  Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email:
Michaela Hympánová
a  Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email:
Tim Keuler
a  Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email:
Andreas J. Schneider
b  Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
Gregor Schnakenburg
c  Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
Michael Gütschow*
a  Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email:
› Author Affiliations
J.K. and M.G. acknowledge financial support by the DFG Forschergruppe under grant number FOR2372.
Further Information

Publication History

Received: 06 November 2018

Accepted after revision: 17 December 2018

Publication Date:
18 February 2019 (eFirst)


The modification of amino acids leads to valuable building blocks for the synthesis of bioactive compounds. By keeping the amino group protected, the carboxylic acid functionality can be converted in two steps into an imidazole moiety via a Davidson-like heterocyclization. This reaction allows for a combinatorial approach, in which two positions at the heterocycle can be modified. Herein, we report the synthesis of such imidazole derivatives by employing N-protected cyclohexylalanine as the starting material. Different α-halo ketones were used and two points of diversity, positions 4 and 5, were examined. The structure of the final imidazole derivatives was confirmed by three X-ray crystal structure analyses and their protease inhibiting activities were evaluated.

Supporting Information

  • References

    • 1a Stark H, Kathmann M, Schlicker E, Schunack W, Schlegel B, Sippl W. Mini-Rev. Med. Chem. 2004; 4: 965
    • 1b De Luca L. Curr. Med. Chem. 2006; 13: 1
    • 1c Gulevich AV, Balenkova ES, Nenajdenko VG. J. Org. Chem. 2007; 72: 7878
    • 1d Heravi MM, Daraie M, Zadsirjan V. Mol. Diversity 2015; 19: 577
    • 1e Gaba M, Mohan C. Med. Chem. Res. 2016; 25: 173
    • 1f Ali I, Lone MN, Aboul-Enein HY. Med. Chem. Commun. 2017; 8: 1742
    • 1g García AM, Salado IG, Perez DI, Brea J, Morales-García JA, González-García A, Cadavid MI, Loza MI, Luque FJ, Perez-Castillo A, Martinez A, Gil C. Future Med. Chem. 2017; 9: 731
  • 2 Ontoria JM, Paonessa G, Ponzi S, Ferrigno F, Nizi E, Biancofiore I, Malancona S, Graziani R, Roberts D, Willis P, Bresciani A, Gennari N, Cecchetti O, Monteagudo E, Orsale MV, Veneziano M, Di Marco A, Cellucci A, Laufer R, Altamura S, Summa V, Harper S. ACS Med. Chem. Lett. 2016; 7: 454
  • 3 Kison C, Opatz T. Chem. Eur. J. 2009; 15: 843
  • 4 Pusch S, Opatz T. Org. Lett. 2014; 16: 5430
    • 5a Haberhauer G, Oeser C, Rominger F. Chem. Commun. 2004; 2044
    • 5b Breslin HJ, Diamond CJ, Kavash RW, Cai C, Dyatkin AB, Miskowski TA, Zhang SP, Wade PR, Hornby PJ, He W. Bioorg. Med. Chem. Lett. 2012; 22: 4869
    • 5c Wiedenhoeft D, Benoit AR, Wu Y, Porter JD, Meyle E, Yeung TH, Huff R, Lindeman SV, Dockendorff C. Tetrahedron 2016; 72: 3905
  • 6 Haberhauer G, Oeser C, Rominger F. Chem. Eur. J. 2005; 11: 6718
    • 7a Clemens JJ, Davis MD, Lynch KR, Macdonald TL. Bioorg. Med. Chem. Lett. 2005; 15: 3568
    • 7b Foss FW. Jr, Mathews TP, Kharel Y, Kennedy PC, Snyder AH, Davis MD, Lynch KR, Macdonald TL. Bioorg. Med. Chem. 2009; 17: 6123
    • 7c Deng H, Bernier SG, Doyle E, Lorusso J, Morgan BA, Westlin WF, Evindar G. ACS Med. Chem. Lett. 2013; 4: 942
  • 8 Hangeland JJ, Friends TJ, Rossi KA, Smallheer JM, Wang C, Sun Z, Corte JR, Fang T, Wong PC, Rendina AR, Barbera FA, Bozarth JM, Luettgen JM, Watson CA, Zhang G, Wei A, Ramamurthy V, Morin PE, Bisacchi GS, Subramaniam S, Arunachalam P, Mathur A, Seiffert DA, Wexler RR, Quan ML. J. Med. Chem. 2014; 57: 9915
  • 9 Casagrande M, Barteselli A, Basilico N, Parapini S, Taramelli D, Sparatore A. Bioorg. Med. Chem. 2012; 20: 5965
    • 10a Meister S, Plouffe DM, Kuhen KL, Bonamy GM, Wu T, Barnes SW, Bopp SE, Borboa R, Bright AT, Che J, Cohen S, Dharia NV, Gagaring K, Gettayacamin M, Gordon P, Groessl T, Kato N, Lee MC, McNamara CW, Fidock DA, Nagle A, Nam TG, Richmond W, Roland J, Rottmann M, Zhou B, Froissard P, Glynne RJ, Mazier D, Sattabongkot J, Schultz PG, Tuntland T, Walker JR, Zhou Y, Chatterjee A, Diagana TT, Winzeler EA. Science 2011; 334: 1372
    • 10b Nagle A, Wu T, Kuhen K, Gagaring K, Borboa R, Francek C, Chen Z, Plouffe D, Lin X, Caldwell C, Ek J, Skolnik S, Liu F, Wang J, Chang J, Li C, Liu B, Hollenbeck T, Tuntland T, Isbell J, Chuan T, Alper PB, Fischli C, Brun R, Lakshminarayana SB, Rottmann M, Diagana TT, Winzeler EA, Glynne R, Tully DC, Chatterjee AK. J. Med. Chem. 2012; 55: 4244
  • 11 Schmitz AL, Schrage R, Gaffal E, Charpentier TH, Wiest J, Hiltensperger G, Morschel J, Hennen S, Häußler D, Horn V, Wenzel D, Grundmann M, Büllesbach KM, Schröder R, Brewitz HH, Schmidt J, Gomeza J, Galés C, Fleischmann BK, Tüting T, Imhof D, Tietze D, Gütschow M, Holzgrabe U, Sondek J, Harden TK, Mohr K, Kostenis E. Chem. Biol. 2014; 21: 890
  • 12 Corte JR, Fang T, Osuna H, Pinto DJ, Rossi KA, Myers JE, Sheriff S, Lou Z, Zheng JJ, Harper TW, Bozarth JM, Wu Y, Luettgen JM, Seiffert DA, Decicco CP, Wexler RR, Quan ML. J. Med. Chem. 2017; 60: 1060
  • 13 Sun J.-H, O’Boyle DR. II, Fridell RA, Langley DR, Wang C, Roberts SB, Nower P, Johnson BM, Moulin F, Nophsker MJ, Wang Y.-K, Liu M, Rigat K, Tu Y, Hewawasam P, Kadow J, Meanwell NA, Cockett M, Lemm JA, Kramer M, Belema M, Gao M. Nature 2015; 527: 245
  • 14 Davidson D, Weiss M, Jelling M. J. Org. Chem. 1937; 2: 328
  • 15 Li B, Gu Q, He Y, Zhao T, Wang S, Kang J, Zhang Y. C. R. Chim. 2012; 15: 784
    • 16a Poitout L, Roubert P, Contour-Galcéra MO, Moinet C, Lannoy J, Pommier J, Plas P, Bigg D, Thurieau C. J. Med. Chem. 2001; 44: 2990
    • 16b Reid RC, Yau MK, Singh R, Hamidon JK, Lim J, Stoermer MJ, Fairlie DP. J. Med. Chem. 2014; 57: 8459
    • 16c Reid RC, Yau MK, Singh R, Lim J, Fairlie DP. J. Am. Chem. Soc. 2014; 136: 11914
  • 17 The X-ray crystallographic data collections of 11, 13, and 14 were performed on a Bruker D8 Venture diffractometer (Photon I detector) at 100(2) K (11) and 150(2) K (13, 14). The diffracto­meter was equipped with a low-temperature device (Oxford Cryostream 800, Oxford Cryosystems) and used mirror optic monochromated Cu Kα radiation (λ = 1.54178 Å). Intensities were measured by fine-slicing ϕ- and ω-scans and corrected for background, polarization, and Lorentz effects. Semi-empirical absorption corrections were applied for all data sets by using Bruker’s SADABS program. The structures were solved by direct methods and refined anisotropically by the least-squares procedure implemented in the ShelX program system. The hydrogen atoms were included isotropically using the riding model on the bound carbon atoms. CCDC 1874893 (14), CCDC 1874894 (11), and CCDC 1883702 (13) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
  • 18 Leroux F, Hutschenreuter TU, Charrière C, Scopelliti R, Hartmann RW. Helv. Chim. Acta 2003; 86: 2671
    • 19a Shaikh NS, Parkin S, Luthe G, Lehmler HJ. Chemosphere 2008; 70: 1694
    • 19b Lehmler HJ, Parkin S, Robertson LW. Chemosphere 2002; 46: 485
  • 20 Charbonneau GP, Delugeard Y. Acta Crystallogr., Sect. B 1976; 32: 1420
  • 21 Grein F. J. Phys. Chem. A 2002; 106: 3823
  • 22 The values in parentheses are related to the second independent molecule in the X-ray crystal structure of 14.
  • 23 Lima CF, Rocha MA, Melo A, Gomes LR, Low JN, Santos LM. J. Phys. Chem. A 2011; 115: 11876
  • 24 Grau D, Grau BW, Hampel F, Tsogoeva SB. Chem. Eur. J. 2018; 24: 6551
  • 25 The values in parentheses are related to the second independent molecule in the X-ray crystal structure of 4′-amino-5′-cyano-3′-nitro-1,1′:2′,1′′-terphenyl.

    • Atropisomers exhibit rotational barriers ≥95 kJ/mol at room temperature. See:
    • 26a Oki M. Top. Stereochem. 1983; 14: 1
    • 26b Wolf C. Dynamic Stereochemistry of Chiral Compounds . RSC Publishing; Cambridge: 2008
    • 26c Ottersbach PA, Schnakenburg G, Gütschow M. Chem. Commun. 2012; 48: 5772
    • 27a Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
    • 27b Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
    • 27c Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
    • 27d Weigend F. Phys. Chem. Chem. Phys. 2006; 8: 1057
    • 27e Grimme S. J. Comput. Chem. 2006; 27: 1787
    • 27f Neese F. WIREs Comput. Mol. Sci. 2018; 8: e1327
  • 28 Dosa S, Stirnberg M, Lülsdorff V, Häußler D, Maurer E, Gütschow M. Bioorg. Med. Chem. 2012; 20: 6489
  • 29 Frizler M, Lohr F, Lülsdorff M, Gütschow M. Chem. Eur. J. 2011; 17: 11419
  • 30 Mertens MD, Schmitz J, Horn M, Furtmann N, Bajorath J, Mareš M, Gütschow M. ChemBioChem 2014; 15: 955
  • 31 Sisay MT, Hautmann S, Mehner C, König GM, Bajorath J, Gütschow M. ChemMedChem 2009; 4: 1425
  • 32 Gütschow M, Pietsch M, Themann A, Fahrig J, Schulze B. J. Enzyme Inhib. Med. Chem. 2005; 20: 341