Synlett 2019; 30(05): 630-634
DOI: 10.1055/s-0037-1612080
letter
© Georg Thieme Verlag Stuttgart · New York

A Copper Halide Promoted Regioselective Halogenation of Coumarins Using N-Halosuccinimide as Halide Source

Jinling Su
,
Yan Zhang
,
Mingren Chen
,
Weiming Li
,
Xuewei Qin
,
Yanping Xie
,
Lixiao Qin
,
Shihua Huang
,
Min Zhang*
School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Rd, Nanning, Guangxi 530004, P. R. of China   Email: cheminzhang@gxu.edu.cn   Email: zhangminnju@hotmail.com
› Author Affiliations
We thank the financial support from the National Natural Science Foundation of China (No. 21462003), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ([2013]1792), the Key Scientific Research Projects of Guangxi Department of Education (2011ZD003), the Scientific Research Foundation of Guangxi University (No. XGZ111491), and the Guangxi Undergraduate Student Innovation Training Project (No. 201710593193).
Further Information

Publication History

Received: 04 December 2018

Accepted after revision: 07 January 2019

Publication Date:
30 January 2019 (online)


Abstract

A safe, convenient, and regioselective synthesis of 3-halo coumarins using a metal halide (CuX2 alone or with ZnX2) promoted halogenation with N-halosuccinimide (NXS) as halide source is reported. The synthesis involved the steady in situ generation of highly reactive positive halogen (X+) by the coordination of copper or zinc with the N-halosuccinimide and subsequent electrophilic aromatic substitution of the electron-deficient coumarins. This procedure works well also for the halogenation of less electron-rich naphthoquinones, flavones, and methoxypsoralen in moderate to quantitative yields. This protocol features simple experimental conditions using readily available inexpensive reagents and provides a convenient approach to the chlorination or bromination of some useful heteroaromatic compounds.

Supporting Information

 
  • References and Notes

    • 1a Vardhan Reddy KH, Brion J.-D, Messaoudi S, Alami M. J. Org. Chem. 2016; 81: 424
    • 1b Luong TT. H, Brachet E, Brion J.-D, Messaoudi S, Alami M. Eur. J. Org. Chem. 2015; 2015: 1771
    • 1c Bruneau A, Brion J.-D, Messaoudi S, Alami M. Org. Biomol. Chem. 2014; 12: 8533
    • 1d Min M, Kim B, Hong S. Org. Biomol. Chem. 2012; 10: 2692
    • 1e Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 2a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 2b Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 2c Weix D. J. Acc. Chem. Res. 2015; 48: 1767
    • 2d Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 3a Huang B, Zhao Y, Yang C, Gao Y, Xia W. Org. Lett. 2017; 19: 3799
    • 3b Voskressensky LG, Golantsov NE, Maharramov AM. Synthesis 2016; 48: 615
    • 3c Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886
    • 3d Schmidt R, Stolle A, Ondruschka B. Green Chem. 2012; 14: 1673
    • 4a Tang R.-J, Milcent T, Crousse B. J. Org. Chem. 2018; 83: 930
    • 4b Zysman-Colman E, Arias K, Siegel JS. Can. J. Chem. 2009; 87: 440
  • 5 Medina FG, Marrero JG, Macias-Alonso M, Gonzalez MC, Cordova-Guerrero I, Teissier Garcia AG, Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
  • 6 Harada K, Kubo H, Tomigahara Y, Nishioka K, Takahashi J, Momose M, Inoue S, Kojima A. Bioorg. Med. Chem. Lett. 2010; 20: 272
    • 7a Xi GL, Liu ZQ. J. Agric. Food Chem. 2015; 63: 3516
    • 7b Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar VS, Prasad AK, Saso L. Curr. Med. Chem. 2011; 18: 3929
  • 8 Stefani HA, Gueogjan K, Manarin F, Farsky SH. P, Zukerman-Schpector J, Caracelli I, Pizano Rodrigues SR, Muscara MN, Teixeira SA, Santin JR, Machado ID, Bolonheis SM, Curi R, Vinolo MA. Eur. J. Med. Chem. 2012; 58: 117
    • 9a Hu Q, Tan Y, Liu M, Yu J, Cui Y, Yang Y. Dyes Pigm. 2014; 107: 45
    • 9b Guo H.-M, Tanaka F. J. Org. Chem. 2009; 74: 2417
    • 9c Zak J, Ron D, Riva E, Harding HP, Cross BC. S, Baxendale IR. Chem. Eur. J. 2012; 18: 9901
    • 10a Xiao D, Martini LA, Snoeberger RC, Crabtree RH, Batista VS. J. Am. Chem. Soc. 2011; 133: 9014
    • 10b Brown AM, Antila LJ, Mirmohades M, Pullen S, Ott S, Hammarström L. J. Am. Chem. Soc. 2016; 138: 8060
    • 11a Azizian J, Mohammadi AA, Bidar I, Mirzaei P. Monatsh. Chem. 2008; 139: 805
    • 11b Sharghi H, Jokar M. Heterocycles 2007; 71: 2721
    • 11c Rodríguez-Domínguez JC, Kirsch G. Synthesis 2006; 1895
    • 11d Rodriguez-Dominguez JC, Kirsch G. Tetrahedron Lett. 2006; 47: 3279
    • 11e Polito L, Cravini M, Poletti L, Lay L. Synth. Commun. 2006; 36: 2203
  • 12 Kim KM, Chung KH, Kim JN, Ryu EK. Synthesis 1993; 283
  • 13 Kim K.-M, Park I.-H. Synthesis 2004; 2641
  • 14 Das B, Venkateswarlu K, Krishnaiah M, Holla H. Tetrahedron Lett. 2006; 47: 8693
  • 15 Das B, Venkateswarlu K, Majhi A, Siddaiah V, Reddy KR. J. Mol. Catal. A: Chem. 2007; 267: 30
  • 16 Ganguly NC, De P, Dutta S. Synthesis 2005; 1103
  • 17 Venkateswarlu K, Suneel K, Das B, Reddy KN, Reddy TS. Synth. Commun. 2009; 39: 215
  • 18 Racys DT, Sharif SA. I, Pimlott SL, Sutherland A. J. Org. Chem. 2016; 81: 772
  • 19 Zhou C.-Y, Li J, Peddibhotla S, Romo D. Org. Lett. 2010; 12: 2104
  • 20 Leboeuf D, Ciesielski J, Frontier AJ. Synlett 2014; 25: 399
  • 21 We have applied for a Chinese patent CN 105541772 to protect the rough findings of this idea before the optimization. In the patent, the activation of NCS using CuCl2·2H2O, AlCl3, ZnCl2 or FeCl3 (1–5 equiv) and the chlorination reactions to afford 2a, 2c, and 2d are described, however, optimized reaction conditions for full conversion of the starting materials are not specified.
  • 22 In the control experiment, no reaction happened by mixing coumarin with either NCS or CuCl2 alone in refluxing acetonitrile even after 36 h.
    • 23a Hao W, Liu Y. Beilstein J. Org. Chem. 2015; 11: 2132
    • 23b Du Z.-J, Gao L.-X, Lin Y.-J, Han F.-S. ChemCatChem 2014; 6: 123
    • 23c Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
    • 23d Galabov B, Nalbantova D, Schleyer PV. R, Schaefer HF. Acc. Chem. Res. 2016; 49: 1191
  • 24 Jardim GA. M, da Silva Junior EN, Bower JF. Chem. Sci. 2016; 7: 3780
  • 25 Huang W, Ding Y, Miao Y, Liu M.-Z, Li Y, Yang G.-F. Eur. J. Med. Chem. 2009; 44: 3687
  • 26 3,7-Dichloro-2H-chromen-2-one (2b) – Typical Procedure To a 50 mL round-bottom flask, 7-chloro coumarin (180.6 mg, 1 mmol), NCS (935.2 mg, 7 mmol), CuCl2·2H2O (2387 mg, 14 mmol), and 20 mL anhydrous MeCN were added and refluxed until the reaction completed. The cooled mixture was concentrated in vacuum, dispensed in 25 mL 5% NaHSO3 aqueous solution and extracted with 25 mL EtOAc for three times. The organic layer was combined, washed with 10 mL water and dried over anhydrous Na2SO4. After the solvent was removed, the crude product was purified by silica gel column chromatography to afford 96.2 mg 2b (44.9%). 3,7-Dichloro-2H-chromen-2-one (2b) White solid, mp 123–124 ℃ (acetone/PE, 2:1, V/V). 1H NMR (600 MHz, CDCl3): δ = 7.84 (s, 1 H), 7.40 (d, J = 8.3 Hz, 1 H), 7.38 (d, J = 1.9 Hz, 1 H), 7.30 (dd, J = 8.3, 1.9 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 156.6, 152.9, 139.3, 137.9, 128.0, 125.7, 122.5, 117.4, 117.2, 100.0. IR (KBr): νmax = 3103, 3061, 3040, 1736, 1720, 1702, 1604, 1484, 1403, 1348, 1318, 1245, 1206, 1144, 1123, 1077, 998, 969, 939, 916, 865, 825, 752, 681, 617, 595, 462 cm–1. HRMS (ESI): m/z calcd for C9H5Cl2O2 [M + H] (35Cl): 214.9661; found: 214.9661.