Synlett 2019; 30(10): 1174-1177
DOI: 10.1055/s-0037-1611942
cluster
© Georg Thieme Verlag Stuttgart · New York

Electrochemical Synthesis of 2-Hydroxy-para-terphenyls by Dehydrogenative Anodic C–C Cross-Coupling Reaction

Sebastian Lips
a  Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany   Email: waldvogel@uni-mainz.de
,
Robert Franke
b  Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
c  Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
,
a  Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany   Email: waldvogel@uni-mainz.de
› Author Affiliations
S.R.W. thanks the DFG (Wa1276/14-1) for financial support. S.L. and S.R.W. acknowledge the Carl-Zeiss Foundation for granting a fellowship and the research network ELYSION, respectively.
Further Information

Publication History

Received: 14 November 2018

Accepted after revision: 04 December 2018

Publication Date:
08 January 2019 (online)


Published as part of the Cluster Electrochemical Synthesis and Catalysis

Abstract

The anodic C–C cross-coupling reaction provides fast access to a wide range of bi- and terarylic scaffolds by electrochemically mediated arylation reactions. Herein, a metal- and reagent-free electrosynthetic protocol for the synthesis of nonsymmetrical 2-hydroxy-para-teraryl derivatives is presented for the first time. It is scalable, easy to conduct, and allows the use of a broad variety of different functional groups.

Supporting Information

 
  • References and Notes

    • 1a Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722; Angew. Chem. 2011, 123, 6854
    • 1b Hussain I, Singh T. Adv. Synth. Catal. 2014; 356: 1661
    • 1c Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900 ; Angew. Chem. 2013, 125, 10084
    • 2a Boudier A, Breuil P.-AR, Magna L, Olivier-Bourbigou H, Braunstein P. Dalton Trans. 2015; 12995
    • 2b Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
    • 2c Vidal-Ferran A, Mon I, Bauzá A, Frontera A, Rovira L. Chem. Eur. J. 2015; 21: 11417
  • 3 von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Angew. Chem. Int. Ed. 2006; 45: 5072 ; Angew. Chem. 2006, 118, 5194
  • 4 Shukla R, Lindeman SV, Rathore R. Chem. Commun. 2009; 5600
    • 5a Albrecht M, Schneider M. Eur. J. Inorg. Chem. 2002; 1301
    • 5b Albrecht M, Schneider M. Synthesis 2000; 1557
  • 6 Peters M, Trobe M, Tan H, Kleineweischede R, Breinbauer R. Chem. Eur. J. 2013; 19: 2442
  • 7 Koch F, Berkefeld A, Schubert H, Grauer C. Chem. Eur. J. 2016; 22: 14640
  • 8 Koch F, Schubert H, Sirsch P, Berkefeld A. Dalton Trans. 2015; 13315
  • 9 Buss JA, Edouard GA, Cheng C, Shi J, Agapie T. J. Am. Chem. Soc. 2014; 136: 11272
    • 10a Gruza MM, Chambron J.-C, Espinosa E, Aubert E. Eur. J. Org. Chem. 2009; 6318
    • 10b Dobrounig P, Trobe M, Breinbauer R. Monatsh. Chem. 2017; 148: 3
    • 10c Yamaguchi M, Kimura T, Shinohara N, Manabe K. Molecules 2013; 18: 15207
  • 11 Huguet N, Lebœuf D, Echavarren AM. Chem. Eur. J. 2013; 19: 6581
    • 12a Choi J, MacArthur AH. R, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
    • 12b Albrecht M, van Koten G. Angew. Chem. Int. Ed. 2001; 40: 3750 ; Angew. Chem. 2001, 113, 3866
  • 13 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 14a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 14b Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594 ; Angew. Chem. 2018, 130, 5694
    • 15a Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 11801 ; Angew. Chem. 2016, 128, 11979
    • 15b Riehl B, Dyballa K, Franke R, Waldvogel S. Synthesis 2016; 49: 252
    • 15c Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2014; 53: 5210 ; Angew. Chem. 2014, 126, 5311
    • 16a Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
    • 16b Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew. Chem. Int. Ed. 2010; 49: 971 ; Angew. Chem. 2010, 122, 983
  • 17 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
  • 18 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877 ; Angew. Chem. 2017, 129, 4955
  • 19 Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727 ; Angew. Chem. 2017, 129, 14920
  • 20 Dahms B, Franke R, Waldvogel SR. ChemElectroChem 2018; 5: 1249
  • 21 Lips S, Frontana-Uribe BA, Dörr M, Schollmeyer D, Franke R, Waldvogel SR. Chem. Eur. J. 2018; 24: 6057
  • 22 Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 13325 ; Angew. Chem. 2018, 130, 13509
  • 23 Lips S, Wiebe A, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 10872 ; Angew. Chem. 2016, 128, 11031
  • 24 Organic Electrochemistry . Speiser B, Hammerich O. CRC Press Taylor & Francis Group; Boca Raton: 2016
  • 25 Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 26a Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018 ; Angew. Chem. 2018, 130: 6124
    • 26b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
  • 27 Wiebe A, Riehl B, Lips S, Franke R, Waldvogel SR. Sci. Adv. 2017; 3: eaao3920
  • 28 Hollóczki O, Berkessel A, Mars J, Mezger M, Wiebe A, Waldvogel SR, Kirchner B. ACS Catal. 2017; 7: 1846
  • 29 Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 88
  • 30 Synthesis of Phenol Arene (3, AB); General Procedure 1,4-Dimethoxybenzene (0.69 g, 5.00 mmol, 1.0 equiv), 4-(1,1-dimethylethyl)-2-methylphenol (1.64 g, 10.0 mmol, 2.0 equiv) and MTBS (0.70 g, 0.09 M) were dissolved in HFIP (25 mL) and transferred to the electrolysis cell. After electrolysis, the solvent was recovered by distillation. Short-path distillation of the residue yielded the desired product as a yellow oil.
  • 32 Introduction of Protecting Group (4, ABPG) 2-Hydroxy-5-methyl-2′,3,4′-trimethoxybiphenyl (4.00 g, 13.3 mmol, 1.0 equiv) was dissolved in anhydrous DMF in a 250 mL round-bottom flask. Sodium hydride (60% dispersion, 0.72 g, 17.29 mmol, 1.3 equiv) was added under nitrogen atmosphere. After 1 hour stirring at room temperature, 2-bromopropane (3.27 g, 26.6 mmol, 2.0 equiv) was added. The reaction mixture was stirred for 3 h at room temperature. The crude product was purified as described in Ref. 34.
  • 33 Gütz C, Klöckner B, Waldvogel SR. Org. Process Res. Dev. 2015; 20: 26
  • 34 Synthesis of Teraryl (5a, ABPGA′); General Procedure 2,4-Dimethylphenol (A′) (0.61 g, 5.00 mmol, 1.0 equiv), 2′,5′-dimethoxy-2-(1-methylethoxy)-3-methyl-5-(1,1-dimethylethyl)biphenyl (ABPG ) (4.28 g, 12.5 mmol, 2.5 equiv) and MTBS (0.70 g) were dissolved in HFIP (25 mL) and transferred into a beaker type cell. Electrolysis was carried out at room temperature with a current density of 5.2 mA/cm². After electrolysis (2.5 F per A′), the solvent was recovered by distillation. Column chromatography of the residue (cyclohexane/ethyl acetate = 99:0.5 → 99:1 → 95:5 → 90:10, total solvent volume: 5 L; column 40 mm × 150 mm) gave the product 5a (1.09 g, 2.36 mmol, 47%) as a yellow oil. 1H NMR (400 MHz, CDCl3): δ = 1.02 (s, 3 H), 1.03 (s, 3 H), 1.37 (s, 9 H), 2.36 (s, 6 H), 2.37 (s, 3 H), 3.78 (sep, 1 H), 3.82 (s, 3 H), 3.88 (s, 3 H), 6.47 (br s, 1 H), 6.99 (s, 1 H), 7.04 (d, J = 6.0 Hz, 2 H), 7.14 (s, 1 H), 7.22–7.25 (m, 2 H); 13C NMR (101 MHz, CDCl3): δ = 16.55, 17.47, 20.63, 22.56, 31.58, 34.23, 56.48, 57.06, 75.35, 115.70, 115.93, 125.81, 126.41, 126.84, 126.94, 127.46, 128.98, 129.45, 129.67, 130.28, 131.06, 131.45, 145.01, 148.88, 149.70, 151.76, 151.94. HRMS (ESI+): m/z [M+Na+] calcd. for C30H38O4: 485.2657; found: 485.2678.
  • 35 Banwell MG, Flynn BL, Stewart SG. J. Org. Chem. 1998; 63: 9139