Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(03): 299-302
DOI: 10.1055/s-0037-1611937
DOI: 10.1055/s-0037-1611937
letter
Direct Synthesis of 1-Alkyl-6-hydroxyalkyl-3a,6a-diphenylglycolurils from 1-Alkylimidazolinones and Their Cyclic Analogues
Further Information
Publication History
Received: 09 October 2018
Accepted after revision: 09 November 2018
Publication Date:
17 December 2018 (online)
Abstract
Two methods for the direct synthesis of previously inaccessible 1-alkyl-6-(hydroxyalkyl)-3a,6a-diphenylglycolurils have been developed as a result of a study of novel cyclocondensations of 1-alkylureas with tetrahydroimidazooxazolones, tetrahydroimidazooxazinones and 1-(hydroxyalkyl)ureas with 1-substituted imidazolinones. A mechanism to rationalize the highly regioselective formation of the target glycolurils is proposed.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611937.
- Supporting Information
-
References and Notes
- 1 Kravchenko AN, Baranov VV, Gazieva GA. Russ. Chem. Rev. 2018; 87: 89
- 2a Sun S, Edwards L, Harrison P. J. Chem. Soc., Perkin Trans. 1 1998; 437
- 2b Rahimizadeh M, Kam K, Jenkins SI, McDonald RS, Harrison PH. M. Can. J. Chem. 2002; 80: 517
- 3a Johnson DW, Palmer LC, Hof F, Iovine PM, Rebek JJr. Chem. Commun. 2002; 2228
- 3b Wu A.-X, Fettiger JC, Isaacs L. Tetrahedron 2002; 58: 9769
- 3c Johnson DW, Hof F, Palmer LC, Martin T, Obst U, Rebek JJr. Chem. Commun. 2003; 1638
- 3d Rowan AE, Elemans JA. A. W, Nolte RJ. M. Acc. Chem. Res. 1999; 32: 995
- 3e Grotzfeld RM, Branda N, Rebek JJr. Science 1996; 271: 487
- 3f Szabo T, O’Leary BM, Rebek JJr. Angew. Chem. Int. Ed. 1998; 37: 3410
- 3g O’Leary BM, Szabo T, Svenstrup N, Schalley CA, Lützen A, Schäfer M, Rebek JJr. J. Am. Chem. Soc. 2001; 123: 11519
- 3h Rivera JM, Martín T, Rebek JJr. J. Am. Chem. Soc. 2001; 123: 5213
- 3i Nuckolls C, Hof F, Martín T, Rebek JJr. J. Am. Chem. Soc. 1999; 121: 10281
- 4a Pryor KE, Rebek JJr. Org. Lett. 1999; 1: 39
- 4b Kim HG, Kang JM. Bull. Korean Chem. Soc. 2006; 27: 1791
- 4c Kravchenko AN, Baranov VV, Gazieva GA, Chikunov IE, Nelyubina YV. Russ. Chem. Bull. 2014; 63: 416
- 4d Kim H, In S, Kang J. Supramol. Chem. 2006; 18: 141
- 5a Baranov VV, Antonova MM, Nelyubina YV, Zanin IE, Kravchenko AN, Makhova NN. Mendeleev Commun. 2014; 3: 173
- 5b Antonova MM, Baranov VV, Nelyubina YV, Kravchenko AN. Chem. Heterocycl. Compd. 2014; 50: 503
- 6 Baranov VV, Antonova MM, Nelyubina YV, Kolotyrkina NG, Kravchenko AN. Synlett 2017; 28: 669
- 7 Kravchenko AN, Antonova MM, Baranov VV, Nelyubina Yu V. Synlett 2015; 26: 2521
- 8 Synthesis of 1-Alkyl-6-hydroxyalkyl-3a,6a-diphenylglycolurils 3 Method 1: To a mixture of the corresponding urea 8b–d (1 mmol), bicyclic compounds 4 or 5 (1 mmol) and MeCN (10 mL) for 4 or MeOH (10 mL) for 5, the hydrochloric acid (0.1 mL, 36.5%) was added. The reaction mixture was heated at reflux with stirring for 20 min (for 4) or 8 h (for 5). The reaction mixture was then cooled and the precipitate was filtered off and washed with a mixture of CHCl3/H2O (1:1, 4 mL), and dried in air. Method 2: To a solution of the corresponding urea 9a and 9b (1 mmol) and imidazolinone 10a–d (1 mmol) in MeCN (10 mL), the hydrochloric acid (0.1 mL, 36.5%) was added. The reaction mixture was heated at reflux with stirring for 20 min. The reaction mixture was then cooled and the precipitate was filtered off and washed with a mixture of CHCl3/H2O (1:1, 4 mL), and dried in air.
- 9 Analytical Data for 1-Ethyl-6-(2-hydroxyethyl)-3a,6a-diphenyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione (3a): Yield: 88% (Method 1), 76% (Method 2); white solid; mp 275–277 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 1.21 (t, J = 6.8 Hz, 3 H, Me), 2.91–3.10 (m, 2 Н, CH2), 3.11–3.30 (m, 2 Н, CH2), 3.56–3.73 (m, 2 H, CH2), 4.79 (t, J = 5.5 Hz, 1 H, OH), 6.75–6.89 (m, 2 H, Ph), 6.92–7.01 (m, 2 Н, Ph), 7.02–7.14 (m, 6 Н, Ph), 8.02 (s, 1 H, NH), 8.12 (s, 1 H, NH). 13C NMR (75 MHz, DMSO-d 6): δ = 14.84 (Me), 36.95, 44.68, 59.46 (CH2), 79.28, 89.91 ((Ph)-C-C-(Ph)), 127.11, 127.41, 127.86, 128.04, 128.42 (Ph), 133.73, 137.45 (C(Ph)), 159.87, 160.30 (C=O). HRMS (ESI): m/z [M+Na]+ calcd for C20H22N4O3Na+: 389.1584; found: 389.1580.