Synlett 2019; 30(15): 1725-1732
DOI: 10.1055/s-0037-1611858
synpacts
© Georg Thieme Verlag Stuttgart · New York

Mechanochemically Gated Photoswitching: Expanding the Scope of Polymer Mechanochromism

,
,
,
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA, Email: mrobb@caltech.edu
› Author Affiliations
Financial support from Caltech and the Dow Next Generation Educator Fund is gratefully acknowledged. MEM was supported by a National Science Foundation Graduate Research Fellowship (NSF, Grant No. DGE-1745301).
Further Information

Publication History

Received: 18 April 2019

Accepted after revision: 17 May 2019

Publication Date:
13 June 2019 (online)


Abstract

Mechanophores are molecules that undergo productive, covalent chemical transformations in response to mechanical force. Over the last decade, a variety of mechanochromic mechanophores have been developed that enable the direct visualization of stress in polymers and polymeric materials through changes in color and chemiluminescence. The recent introduction of mechanochemically gated photoswitching extends the repertoire of polymer mechanochromism by decoupling the mechanical activation from the visible response, enabling the mechanical history of polymers to be recorded and read on-demand using light. Here, we discuss advances in mechanochromic mechanophores and present our design of a cyclopentadiene–maleimide Diels–Alder adduct that undergoes a force-induced retro-[4+2] cycloaddition reaction to reveal a latent diarylethene photoswitch. Following mechanical activation, UV light converts the colorless diarylethene molecule into the colored isomer via a 6π-electrocyclic ring-closing reaction. Mechanically gated photoswitching expands on the fruitful developments in mechanochromic polymers and provides a promising platform for further innovation in materials applications including stress sensing, patterning, and information storage.

1 Introduction to Polymer Mechanochemistry

2 Mechanochromic Reactions for Stress Sensing

3 Regiochemical Effects on Mechanophore Activation

4 Mechanochemically Gated Photoswitching

5 Conclusions

 
  • References

  • 1 Beyer MK, Clausen-Schaumann H. Chem. Rev. 2005; 105: 2921
  • 2 Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS. Chem. Rev. 2009; 109: 5755
  • 3 Li J, Nagamani C, Moore JS. Acc. Chem. Res. 2015; 48: 2181
  • 4 Berkowski KL, Potisek SL, Hickenboth CR, Moore JS. Macromolecules 2005; 38: 8975
  • 5 Piermattei A, Karthikeyan S, Sijbesma RP. Nat. Chem. 2009; 1: 133
  • 6 Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS. Nat. Chem. 2014; 6: 623
  • 7 Ramirez AL. B, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL. Nat. Chem. 2013; 5: 757
  • 8 Wang J, Piskun I, Craig SL. ACS Macro Lett. 2015; 4: 834
  • 9 Robb MJ, Moore JS. J. Am. Chem. Soc. 2015; 137: 10946
  • 10 Zhang H, Gao F, Cao X, Li Y, Xu Y, Weng W, Boulatov R. Angew. Chem. Int. Ed. 2016; 55: 3040
  • 11 Chen Z, Mercer JA. M, Zhu X, Romaniuk JA. H, Pfattner R, Cegelski L, Martinez TJ, Burns NZ, Xia Y. Science 2017; 357: 475
  • 12 Chen Y, Spiering AJ. H, Karthikeyan S, Peters GW. M, Meijer EW, Sijbesma RP. Nat. Chem. 2012; 4: 559
  • 13 Potisek SL, Davis DA, Sottos NR, White SR, Moore JS. J. Am. Chem. Soc. 2007; 129: 13808
  • 14 Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature 2009; 459: 68
  • 15 Gossweiler GR, Hewage GB, Soriano G, Wang Q, Welshofer GW, Zhao X, Craig SL. ACS Macro Lett. 2014; 3: 216
  • 16 Göstl R, Sijbesma RP. Chem. Sci. 2015; 7: 370
  • 17 Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed. 2015; 54: 6168
  • 18 Wang Z, Ma Z, Wang Y, Xu Z, Luo Y, Wei Y, Jia X. Adv. Mater. 2015; 27: 6469
  • 19 Robb MJ, Kim TA, Halmes AJ, White SR, Sottos NR, Moore JS. J. Am. Chem. Soc. 2016; 138: 12328
  • 20 Li Z, Toivola R, Ding F, Yang J, Lai P.-N, Howie T, Georgeson G, Jang S.-H, Li X, Flinn BD, Jen AK.-Y. Adv. Mater. 2016; 28: 6592
  • 21 Wang T, Zhang N, Dai J, Li Z, Bai W, Bai R. ACS Appl. Mater. Interfaces 2017; 9: 11874
  • 22 Kosuge T, Zhu X, Lau VM, Aoki D, Martinez TJ, Moore JS, Otsuka H. J. Am. Chem. Soc. 2019; 141: 1898
  • 23 Verstraeten F, Göstl R, Sijbesma RP. Chem. Commun. 2016; 52: 8608
  • 24 Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR. Nature 2007; 446: 423
  • 25 Ribas-Arino J, Shiga M, Marx D. Chem. Eur. J. 2009; 15: 13331
  • 26 Wang J, Kouznetsova TB, Niu Z, Ong MT, Klukovich HM, Rheingold AL, Martinez TJ, Craig SL. Nat. Chem. 2015; 7: 323
  • 27 Wollenhaupt M, Krupička M, Marx D. ChemPhysChem 2015; 16: 1593
  • 28 Ribas-Arino J, Shiga M, Marx D. Angew. Chem. Int. Ed. 2009; 48: 4190
  • 29 Stauch T, Dreuw A. Acc. Chem. Res. 2017; 50: 1041
  • 30 Roessler AG, Zimmerman PM. J. Phys. Chem. C 2018; 122: 6996
  • 31 Löwe C, Weder C. Adv. Mater. 2002; 14: 1625
  • 32 Imato K, Kanehara T, Ohishi T, Nishihara M, Yajima H, Ito M, Takahara A, Otsuka H. ACS Macro Lett. 2015; 4: 1307
  • 33 Sumi T, Goseki R, Otsuka H. Chem. Commun. 2017; 53: 11885
  • 34 Ishizuki K, Oka H, Aoki D, Goseki R, Otsuka H. Chem. Eur. J. 2018; 24: 3170
  • 35 Sakai H, Sumi T, Aoki D, Goseki R, Otsuka H. ACS Macro Lett. 2018; 7: 1359
  • 36 Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Science 2014; 344: 186
  • 37 Kean ZS, Hawk JL, Lin S, Zhao X, Sijbesma RP, Craig SL. Adv. Mater. 2014; 26: 6013
  • 38 Clough JM, Creton C, Craig SL, Sijbesma RP. Adv. Funct. Mater. 2016; 26: 9063
  • 39 Konda SS. M, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE. J. Am. Chem. Soc. 2013; 135: 12722
  • 40 Church DC, Peterson GI, Boydston AJ. ACS Macro Lett. 2014; 3: 648
  • 41 Li J, Shiraki T, Hu B, Wright RA. E, Zhao B, Moore JS. J. Am. Chem. Soc. 2014; 136: 15925
  • 42 Larsen MB, Boydston AJ. J. Am. Chem. Soc. 2013; 135: 8189
  • 43 Lyu B, Cha W, Mao T, Wu Y, Qian H, Zhou Y, Chen X, Zhang S, Liu L, Yang G, Lu Z, Zhu Q, Ma H. ACS Appl. Mater. Interfaces 2015; 7: 6254
  • 44 Min Y, Huang S, Wang Y, Zhang Z, Du B, Zhang X, Fan Z. Macromolecules 2015; 48: 316
  • 45 Duan HY, Wang YX, Wang LJ, Min YQ, Zhang XH, Du BY. Macromolecules 2017; 50: 1353
  • 46 Stevenson R, De Bo G. J. Am. Chem. Soc. 2017; 139: 16768
  • 47 Wang J, Kouznetsova TB, Boulatov R, Craig SL. Nat. Commun. 2016; 7: 13433
  • 48 Kida J, Imato K, Goseki R, Morimoto M, Otsuka H. Chem. Lett. 2017; 46: 992
  • 49 Kida J, Imato K, Goseki R, Aoki D, Morimoto M, Otsuka H. Nat. Commun. 2018; 9: 3504
  • 50 Lemieux V, Gauthier S, Branda NR. Angew. Chem. Int. Ed. 2006; 45: 6820
  • 51 Hu X, McFadden ME, Barber RW, Robb MJ. J. Am. Chem. Soc. 2018; 140: 14073
  • 52 Harvey SC. J. Am. Chem. Soc. 1949; 71: 1121
  • 53 Beyer MK. J. Chem. Phys. 2000; 112: 7307
  • 54 Kryger MJ, Munaretto AM, Moore JS. J. Am. Chem. Soc. 2011; 133: 18992
  • 55 Lucas LN, Van Esch J, Kellogg RM, Feringa BL. Chem. Commun. 1998; 3: 2313
  • 56 Kobatake S, Terakawa Y. Chem. Commun. 2007; 1698