Synlett 2019; 30(10): 1149-1163
DOI: 10.1055/s-0037-1611753
cluster
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds

Chunlan Song
a  College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. of China   Email: aiwenlei@whu.edu.cn   Email: cwchiang@whu.edu.cn
,
Kun Liu
a  College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. of China   Email: aiwenlei@whu.edu.cn   Email: cwchiang@whu.edu.cn
,
Xin Dong
a  College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. of China   Email: aiwenlei@whu.edu.cn   Email: cwchiang@whu.edu.cn
,
Chien-Wei Chiang*
a  College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. of China   Email: aiwenlei@whu.edu.cn   Email: cwchiang@whu.edu.cn
,
Aiwen Lei*
a  College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. of China   Email: aiwenlei@whu.edu.cn   Email: cwchiang@whu.edu.cn
b  National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21520102003, 21701127), the Hubei Province Natural Science Foundation of China (2017CFB152, 2017CFA010), and the Fundamental Research Funds for the Central Universities (213413000050). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated.
Further Information

Publication History

Received: 24 January 2019

Accepted after revision: 25 February 2019

Publication Date:
15 April 2019 (online)


Published as part of the Cluster Electrochemical Synthesis and Catalysis

Abstract

With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.

1 Introduction

2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds

2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds

2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds

3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds

3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds

3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds

4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds

5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds

6 Conclusion

 
  • References

    • 1a Conroy S, Kindon N, Kellam B, Stocks MJ. J. Med. Chem. 2016; 59: 9981
    • 1b Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
    • 1c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 1d Karabanovich G, Zemanová J, Smutný T, Székely R, Šarkan M, Centárová I, Vocat A, Pávková I, Čonka P, Němeček J, Stolaříková J, Vejsová M, Vávrová K, Klimešová V, Hrabálek A, Pávek P, Cole ST, Mikušová K, Roh J. J. Med. Chem. 2016; 59: 2362
    • 1e Ling C, Fu L, Gao S, Chu W, Wang H, Huang Y, Chen X, Yang Y. J. Med. Chem. 2014; 57: 4772
    • 1f Liu J, Yang J, Yang Q, Wang G, Li Y. Adv. Funct. Mater. 2005; 15: 1297
    • 1g Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 2a Hartwig JF. Nature 2008; 455: 314
    • 2b Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 2c Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 2d Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 2e Xi Y, Dong B, McClain EJ, Wang Q, Gregg TL, Akhmedov NG, Petersen JL, Shi X. Angew. Chem. Int. Ed. 2014; 53: 4657
    • 3a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 3b Eichman CC, Stambuli JP. Molecules 2011; 16: 590
    • 3c Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
    • 3d Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 4a Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 4b Mispelaere-Canivet C, Spindler J.-F, Perrio S, Beslin P. Tetrahedron 2005; 61: 5253
    • 5a Herradura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
    • 5b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 6a Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 6b Lin Y.-Y, Wang Y.-J, Lin C.-H, Cheng J.-H, Lee C.-F. J. Org. Chem. 2012; 77: 6100
    • 6c Wu W.-Y, Wang J.-C, Tsai F.-Y. Green Chem. 2009; 11: 326
  • 7 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
  • 8 Jammi S, Barua P, Rout L, Saha P, Punniyamurthy T. Tetrahedron Lett. 2008; 49: 1484
    • 9a Zhao Y, Wang H, Hou X, Hu Y, Lei A, Zhang H, Zhu L. J. Am. Chem. Soc. 2006; 128: 15048
    • 9b Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 9c Chen M, Zheng X, Li W, He J, Lei A. J. Am. Chem. Soc. 2010; 132: 4101
    • 9d Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 9e Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 9f Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
    • 9g Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 9h He C, Guo S, Ke J, Hao J, Xu H, Chen H, Lei A. J. Am. Chem. Soc. 2012; 134: 5766
    • 9i Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J.-X, Wu L.-Z, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
    • 9j Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 9k Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459
    • 9l Song C, Yi H, Dou B, Li Y, Singh AK, Lei A. Chem. Commun. 2017; 53: 3689
    • 9m Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 9n Song C, Dong X, Yi H, Chiang C.-W, Lei A. ACS Catal. 2018; 8: 2195
    • 10a Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
    • 10b Jutand A. Chem. Rev. 2008; 108: 2300
    • 10c Yoshida J.-i, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 10d Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 10e Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 10f Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 10g Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 10h Liang S, Xu K, Zeng C.-C, Tian H.-Y, Sun B.-G. Adv. Synth. Catal. 2018; 360: 4266
    • 10i Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
    • 10j Moeller KD. Chem. Rev. 2018; 118: 4817
    • 10k Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 11a Xu G, Moeller KD. Org. Lett. 2010; 12: 2590
    • 11b Xu H.-C, Moeller KD. J. Am. Chem. Soc. 2010; 132: 2839
    • 11c Ye K.-Y, Pombar G, Fu N, Sauer GS, Keresztes I, Lin S. J. Am. Chem. Soc. 2018; 140: 2438
    • 11d Fu N, Sauer GS, Lin S. J. Am. Chem. Soc. 2017; 139: 15548
    • 11e Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 11f Liu K, Tang S, Huang P, Lei A. Nat. Commun. 2017; 8: 775
    • 11g Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
    • 11h Tang S, Wang S, Liu Y, Cong H, Lei A. Angew. Chem. Int. Ed. 2018; 57: 4737
    • 11i Yang Q.-L, Li Y.-Q, Ma C, Fang P, Zhang X.-J, Mei T.-S. J. Am. Chem. Soc. 2017; 139: 3293
    • 11j Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587
    • 11k Rafiee M, Wang F, Hruszkewycz DP, Stahl SS. J. Am. Chem. Soc. 2018; 140: 22
    • 12a Beaulieu C, Guay D, Wang Z, Evans DA. Tetrahedron Lett. 2004; 45: 3233
    • 12b Meadows DC, Gervay-Hague J. Med. Res. Rev. 2006; 26: 793
    • 12c Yang H, Carter RG, Zakharov LN. J. Am. Chem. Soc. 2008; 130: 9238
    • 12d Alba A.-NR, Companyó X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
    • 12e Nielsen M, Jacobsen CB, Holub N, Paixão MW, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 2668
    • 12f Aziz J, Messaoudi S, Alami M, Hamze A. Org. Biomol. Chem. 2014; 12: 9743
    • 12g Deeming AS, Emmett EJ, Richards-Taylor CS, Willis MC. Synthesis 2014; 46: 2701
    • 12h Gauthier DR, Yoshikawa N. Org. Lett. 2016; 18: 5994
    • 12i Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
  • 13 Luo Y.-C, Pan X.-J, Yuan G.-Q. Tetrahedron 2015; 71: 2119
  • 14 Qian P, Bi M, Su J, Zha Z, Wang Z. J. Org. Chem. 2016; 81: 4876
  • 15 Chan C.-K, Lo N.-C, Chen P.-Y, Chang M.-Y. Synthesis 2017; 49: 4469
  • 16 Zheng M.-W, Yuan X, Cui Y.-S, Qiu J.-K, Li G, Guo K. Org. Lett. 2018; 20: 7784
  • 17 Gao Y, Mei H, Han J, Pan Y. Chem. Eur. J. 2018; 24: 17205
    • 18a Zeng C.-C, Liu C.-F, Zeng J, Zhong R.-G. J. Electroanal. Chem. 2007; 608: 85
    • 18b Nematollahi D, Varmaghani F. Electrochim. Acta 2008; 53: 3350
    • 18c Nematollahi D, Esmaili R. Tetrahedron Lett. 2010; 51: 4862
    • 18d Nematollahi D, Amani A. J. Electroanal. Chem. 2011; 651: 72
    • 18e Sharafi-Kolkeshvandi M, Nematollahi D, Nikpour F. Synthesis 2017; 49: 1555
  • 19 Nourmohammadi F, Golabi SM, Saadnia A. J. Electroanal. Chem. 2002; 529: 12
    • 20a La Regina G, Coluccia A, Brancale A, Piscitelli F, Gatti V, Maga G, Samuele A, Pannecouque C, Schols D, Balzarini J, Novellino E, Silvestri R. J. Med. Chem. 2011; 54: 1587
    • 20b Ivachtchenko AV, Golovina ES, Kadieva MG, Kysil VM, Mitkin OD, Tkachenko SE, Okun IM. J. Med. Chem. 2011; 54: 8161
    • 20c Liu KG, Robichaud AJ, Bernotas RC, Yan Y, Lo JR, Zhang M.-Y, Hughes ZA, Huselton C, Zhang GM, Zhang JY, Kowal DM, Smith DL, Schechter LE, Comery TA. J. Med. Chem. 2010; 53: 7639
    • 20d Becker DP, Barta TE, Bedell LJ, Boehm TL, Bond BR, Carroll J, Carron CP, DeCrescenzo GA, Easton AM, Freskos JN, Funckes-Shippy CL, Heron M, Hockerman S, Howard CP, Kiefer JR, Li MH, Mathis KJ, McDonald JJ, Mehta PP, Munie GE, Sunyer T, Swearingen CA, Villamil CI, Welsch D, Williams JM, Yu Y, Yao J. J. Med. Chem. 2010; 53: 6653
    • 20e Nuti E, Panelli L, Casalini F, Avramova SI, Orlandini E, Santamaria S, Nencetti S, Tuccinardi T, Martinelli A, Cercignani G, D'Amelio N, Maiocchi A, Uggeri F, Rossello A. J. Med. Chem. 2009; 52: 6347
  • 21 Feng M.-L, Xi L.-Y, Chen S.-Y, Yu X.-Q. Eur. J. Org. Chem. 2017; 2746
  • 22 Pan X.-J, Gao J, Yuan G.-Q. Tetrahedron 2015; 71: 5525
    • 23a Li X, Xu X, Zhou C. Chem. Commun. 2012; 48: 12240
    • 23b Wei W, Liu C, Yang D, Wen J, You J, Suo Y, Wang H. Chem. Commun. 2013; 49: 10239
    • 23c Yang Y, Tang L, Zhang S, Guo X, Zha Z, Wang Z. Green Chem. 2014; 16: 4106
    • 23d Li S, Li X, Yang F, Wu Y. Org. Chem. Front. 2015; 2: 1076
    • 23e Yang Y, Bao Y, Guan Q, Sun Q, Zha Z, Wang Z. Green Chem. 2017; 19: 112
  • 24 Terent’ev AO, Mulina OM, Pirgach DA, Ilovaisky AI, Syroeshkin MA, Kapustina NI, Nikishin GI. Tetrahedron 2017; 73: 6871
  • 25 Zhao Y, Lai Y.-L, Du K.-S, Lin D.-Z, Huang J.-M. J. Org. Chem. 2017; 82: 9655
  • 26 Yuan Y, Cao Y, Lin Y, Li Y, Huang Z, Lei A. ACS Catal. 2018; 8: 10871
  • 27 Yuan Y, Yu Y, Qiao J, Liu P, Yu B, Zhang W, Liu H, He M, Huang Z, Lei A. Chem. Commun. 2018; 54: 11471
    • 28a Do QT, Elothmani D, Guillanton GL. Tetrahedron Lett. 1998; 39: 4657
    • 28b Do QT, Elothmani D, Simonet J, Guillanton GL. Electrochim. Acta 2005; 50: 4792
  • 29 Töteberg-Kaulen S, Steckhan E. Tetrahedron 1988; 44: 4389
    • 30a Matsumoto K, Suga S, Yoshida J.-i. Org. Biomol. Chem. 2011; 9: 2586
    • 30b Yoshida J.-i, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
    • 31a Shunsuke F, Kouichi M, Seiji S, Jun-ichi Y. Chem. Lett. 2009; 38: 1186
    • 31b Fujie S, Matsumoto K, Suga S, Nokami T, Yoshida J.-i. Tetrahedron 2010; 66: 2823
    • 31c Matsumoto K, Sanada T, Shimazaki H, Shimada K, Hagiwara S, Fujie S, Ashikari Y, Suga S, Kashimura S, Yoshida J.-i. Asian J. Org. Chem. 2013; 2: 325
    • 31d Matsumoto K, Shimazaki H, Sanada T, Shimada K, Hagiwara S, Suga S, Kashimura S, Yoshida J.-i. Chem. Lett. 2013; 42: 843
  • 32 Matsumoto K, Kozuki Y, Ashikari Y, Suga S, Kashimura S, Yoshida J.-i. Tetrahedron Lett. 2012; 53: 1916
  • 33 Suga S, Okajima M, Fujiwara K, Yoshida J.-i. J. Am. Chem. Soc. 2001; 123: 7941
  • 34 Chen C, Niu P, Shen Z, Li M. J. Electrochem. Soc. 2018; 165: G67
  • 35 Hosseinian A, Ahmadi S, Nasab FA. H, Mohammadi R, Vessally E. Top. Curr. Chem. 2018; 376: 39
  • 36 Nematollahi D, Tammari E. J. Org. Chem. 2005; 70: 7769
  • 37 Zeng C.-C, Liu F.-J, Ping D.-W, Hu L.-M, Cai Y.-L, Zhong R.-G. Tetrahedron 2009; 65: 4505
  • 38 Fakhari AR, Hosseiny Davarani SS, Ahmar H, Hasheminasab K, Khavasi HR. J. Heterocycl. Chem. 2009; 46: 443
    • 39a Kashiwagi T, Amemiya F, Fuchigami T, Atobe M. Chem. Commun. 2012; 48: 2806
    • 39b Kashiwagi T, Amemiya F, Fuchigami T, Atobe M. J. Flow Chem. 2012; 3: 17
  • 40 Wang P, Tang S, Huang P, Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
  • 41 Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin. J. Chem. 2019; 37: 49
  • 42 Yuan Y, Chen Y, Tang S, Huang Z, Lei A. Sci. Adv. 2018; 4: eaat5312
  • 43 Wang Y, Deng L, Mei H, Du B, Han J, Pan Y. Green Chem. 2018; 20: 3444
  • 44 Ogawa KA, Boydston AJ. Org. Lett. 2014; 16: 1928
    • 45a Nagamachi T, Fourrey JL, Torrence PF, Waters JA, Witkop B. J. Med. Chem. 1974; 17: 403
    • 45b Yagodinets PI, Skripskaya OV, Prodanchuk NG, Chernyuk IN, Sinchenko VG, Dozirtsiv GM, Pityk MY. Pharm. Chem. J. 1995; 29: 54
    • 45c Elhalem E, Bailey BN, Docampo R, Ujváry I, Szajnman SH, Rodriguez JB. J. Med. Chem. 2002; 45: 3984
    • 45d Kokorekin VA, Terent’ev AO, Ramenskaya GV, Grammatikova NÉ, Rodionova GM, Ilovaiskii AI. Pharm. Chem. J. 2013; 47: 422
  • 46 Kelly TR, Kim MH, Curtis AD. M. J. Org. Chem. 1993; 58: 5855
  • 47 Fritz HP, Ecker P. Chem. Ber. 1981; 114: 3643
    • 48a Krishnan P, Gurjar VG. Synth. Commun. 1992; 22: 2741
    • 48b Krishnan P, Gurjar VG. J. Appl. Electrochem. 1995; 25: 792
    • 48c Gitkis A, Becker JY. Electrochim. Acta 2010; 55: 5854
  • 49 Fotouhi L, Nikoofar K. Tetrahedron Lett. 2013; 54: 2903
    • 50a Kokorekin VA, Sigacheva VL, Petrosyan VA. Tetrahedron Lett. 2014; 55: 4306
    • 50b Zhang X, Wang C, Jiang H, Sun L. RSC Adv. 2018; 8: 22042
  • 51 Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F.-z. Adv. Synth. Catal. 2018; 360: 1444
  • 52 Kang L.-S, Luo M.-H, Lam CM, Hu L.-M, Little RD, Zeng C.-C. Green Chem. 2016; 18: 3767
  • 53 Sinhmar A, Sharma A, Rajak H, Pathak DP. J. Enzyme Inhib. Med. Chem. 2013; 28: 240
    • 54a Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
    • 54b Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. Chem. Commun. 2012; 48: 76
  • 55 Tabaković I, Trkovnik M, Batušić M, Tabaković K. Synthesis 1979; 590
  • 56 Qian X.-Y, Li S.-Q, Song J, Xu H.-C. ACS Catal. 2017; 7: 2730
  • 57 Folgueiras-Amador AA, Qian X.-Y, Xu H.-C, Wirth T. Chem. Eur. J. 2018; 24: 487
  • 58 Wang H.-B, Huang J.-M. Adv. Synth. Catal. 2016; 358: 1975
  • 59 Wang P, Tang S, Lei A. Green Chem. 2017; 19: 2092
  • 60 Wang Z.-Q, Meng X.-J, Li Q.-Y, Tang H.-T, Wang H.-S, Pan Y.-M. Adv. Synth. Catal. 2018; 360: 4043
  • 61 Jiang Y.-Y, Liang S, Zeng C.-C, Hu L.-M, Sun B.-G. Green Chem. 2016; 18: 6311
  • 62 Wen J, Shi W, Zhang F, Liu D, Tang S, Wang H, Lin X.-M, Lei A. Org. Lett. 2017; 19: 3131