Synthesis 2019; 51(16): 3160-3170
DOI: 10.1055/s-0037-1611575
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Intramolecular α-C–H Amination via Ring-Opening Cyclization Strategy to Quinazolin-4-ones: Development and Application in Rutaecarpine Synthesis

Srilaxmi M. Patel
a   Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
,
Harika Chada
b   Loyola Academy Degree & P. G College, Old Alwal, Secunderabad, Telangana 500010, India   Email: sharada@iith.ac.in
,
Sonali Biswal
a   Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
,
Sonika Sharma
b   Loyola Academy Degree & P. G College, Old Alwal, Secunderabad, Telangana 500010, India   Email: sharada@iith.ac.in
,
a   Catalysis & Chemical Biology Laboratory, Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
› Author Affiliations
We gratefully acknowledge the Council of Scientific and Industrial Research (CSIR 02(0297)/17/EMR-II), New Delhi, India and the Indian Institute of Technology Hyderabad (IITH) for financial support. S.M.P. thanks UGC and S.B. thanks CSIR, New Delhi, India for the award of a research fellowship.
Further Information

Publication History

Received: 05 January 2019

Accepted after revision: 19 March 2019

Publication Date:
15 April 2019 (online)


Abstract

A copper-catalyzed intramolecular α-C–H amination has been developed for the synthesis of quinazolin-4(3H)-one derivatives from commercially available isatoic anhydride and primary and secondary benzylamines via ring-opening cyclization (ROC). This method shows good functional group tolerance and allows access to a range of 2-aryl, 2-alkyl, and spiroquinazolinone derivatives. However, 2-methylquinazolin-4(3H)-one was synthesized from 2-amino-N-isopropylbenzamide by C–C bond cleavage, and N-benzyl-2-(methylamino)benzamide afforded 1-methyl-2-phenylquinazolin-4(1H)-one along with 2-phenylquinazolin-4(3H)-one by N–C bond cleavage for aromatization. It is the first general method to construct the potentially useful 2-methylquinazolin-4(3H)-one by copper-catalyzed intramolecular C–H amination. Also this ROC strategy has been successfully applied to the synthesis of quinazolinone alkaloid rutaecarpine.

Supporting Information

 
  • References

    • 1a Rao KR, Raghunadh A, Mekala R, Meruva SB, Pratap TV, Krishna T, Pal M. Tetrahedron Lett. 2014; 55: 6004
    • 1b Wen LR, Dou Q, Wang YC, Zhang JW, Guo WS, Li M. J. Org. Chem. 2017; 82: 1428
    • 2a Jia FC, Zhou ZW, Xu C, Wu YD, Wu AX. Org. Lett. 2016; 18: 2942
    • 2b Zhang S, Qi F, Fang X, Yang D, Hu H, Huang Q, Yang Q. Eur. J. Med. Chem. 2018; 160: 133
    • 3a Sridharan V, Ribelles P, Ramos MT, Menéndez JC. J. Org. Chem. 2009; 74: 5715
    • 3b Twin H, Batey RA. Org. Lett. 2004; 6: 4913
    • 3c Mhaske SB, Argade NP. J. Org. Chem. 2004; 69: 4563
    • 3d Zhu YP, Fei Z, Liu MC, Jia FC, Wu AX. Org. Lett. 2012; 15: 378
  • 4 Chandrika PM, Yakaiah T, Rao AR. R, Narsaiah B, Reddy NC, Sridhar V, Rao JV. Eur. J. Med. Chem. 2008; 43: 846
    • 5a Alagarsamy V, Solomon VR, Dhanabal K. Bioorg. Med. Chem. 2007; 15: 235
    • 5b Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S, Sohda T. J. Med. Chem. 1996; 39: 5176
    • 5c Rajput CS, Singhal S. J. Pharm. (Cairo) 2013; 907525
    • 6a Abd-Alla MA, Ahmed AH. N, El-Zohry MF, Omar FA. Collect. Czech. Chem. Commun. 1992; 57: 1547
    • 6b El-Zohry MF, Ahmed AE. H. N, Omar FA, Abd-Alla MA. J. Chem. Technol. Biotechnol. 1992; 53: 329
  • 7 Yen M.-H, Sheu J.-R, Peng I.-H, Lee Y.-M, Chern J.-WJ. J. Pharm. Pharmacol. 1996; 48: 90
    • 8a Upadhyaya K, Thakur RK, Shukla SK, Tripathi RP. J. Org. Chem. 2016; 81: 5046
    • 8b Mahesh D, Satheesh V, Kumar SV, Punniyamurthy T. Org. Lett. 2017; 19: 6554
    • 8c Sau P, Rakshit A, Modi A, Behera A, Patel BK. J. Org. Chem. 2018; 83: 1056
    • 8d Zhang M, Ruzi R, Li N, Xie J, Zhu C. Org. Chem. Front. 2018; 5: 749
    • 8e Dang P, Zheng Z, Liang Y. J. Org. Chem. 2017; 82: 2263
    • 8f Sangeetha S, Sekar G. Org. Lett. 2017; 19: 1670
    • 8g Das D, Seidel D. Org. Lett. 2013; 15: 4358
    • 9a Gutiérrez-Bonet A, Juliá-Hernández F, de Luis B, Martin R. J. Am. Chem. Soc. 2016; 138: 6384
    • 9b Kumar S, Vasantha V. Org. Chem. Front. 2018; 5: 2630
    • 9c Sharma R, Kumar R, Kumar R, Upadhyay P, Sahal D, Sharma U. J. Org. Chem. 2018; 83: 12702
    • 10a Vidyacharan S, Murugan A, Sharada DS. J. Org. Chem. 2016; 81: 2837
    • 10b Liu J, Wei W, Zhao T, Liu X, Wu J, Yu W, Chang J. J. Org. Chem. 2016; 81: 9326
    • 10c Chen W, Xie Z, Zheng H, Lou H, Liu L. Org. Lett. 2014; 16: 5988
    • 10d Guo A, Han JB, Tang XY. Org. Lett. 2018; 20: 2351
    • 11a Sagar A, Vidaycharan S, Shinde AH, Sharada DS. Org. Biomol. Chem. 2016; 14: 4018
    • 11b Arepally S, Babu VN, Bakthadoss M, Sharada DS. Org. Lett. 2017; 19: 5014
    • 12a Yang W, Chen J, Huang X, Ding J, Liu M, Wu H. Org. Lett. 2014; 16: 5418
    • 12b Mahdavi M, Hassanzadeh R, Soheilizad M, Golshani S, Moghimi S, Firoozpour L, Foroumadi A. Tetrahedron Lett. 2016; 57: 3770
    • 13a Modak A, Dutta U, Kancherla R, Maity S, Bhadra M, Mobin SM, Maiti D. Org. Lett. 2014; 16: 2602
    • 13b Gholap AV, Maity S, Schulzke C, Maiti D, Kapdi AR. Org. Biomol. Chem. 2017; 15: 7140
  • 14 Lahm G, Deichmann JG, Rauen AL, Opatz T. J. Org. Chem. 2015; 80: 2010
    • 15a Wen LR, Dou Q, Wang YC, Zhang JW, Guo WS, Li M. J. Org. Chem. 2017; 82: 1428
    • 15b Kong XF, Zhan F, He GX, Pan CX, Gu CX, Lu K, Su GF. J. Org. Chem. 2018; 83: 2006
  • 16 Clemenceau A, Wang Q, Zhu J. Org. Lett. 2017; 19: 4872
  • 17 Hu BQ, Wang LX, Yang L, Xiang JF, Tang YL. Eur. J. Org. Chem. 2015; 4504
    • 18a Chen X, Chen T, Zhou Y, Han D, Han LB, Yin SF. Org. Biomol. Chem. 2014; 12: 3802
    • 18b Gong JL, Qi X, Wei D, Feng JB, Wu XF. Org. Biomol. Chem. 2014; 12: 7486
  • 19 Zhao D, Wang T, Li JX. Chem. Comm. 2014; 50: 6471