Synlett 2019; 30(10): 1164-1173
DOI: 10.1055/s-0037-1611568
cluster
© Georg Thieme Verlag Stuttgart · New York

Metallaelectro-Catalyzed C–H Activation by Weak Coordination

Youai Qiu
,
Julia Struwe
,
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
› Author Affiliations
Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG) (Gottfried-Wilhelm-Leibniz award to L.A.).
Further Information

Publication History

Received: 02 March 2019

Accepted after revision: 10 May 2019

Publication Date:
21 May 2019 (online)


Published as part of the Cluster Electrochemical Synthesis and Catalysis

Abstract

The merger of organometallic C–H activation with electrocatalysis has emerged as a powerful strategy for molecular synthesis, avoiding the use of toxic and expensive chemical oxidants in stoichiometric quantities. This review summarizes recent progress in transition-metal-catalyzed electrochemical C–H activation by weak chelation assistance until March 2019.

1 Introduction

2 Ruthenaelectro-Catalyzed C–H Activation

3 Rhodaelectro-Catalyzed C–H Activation

4 Iridaelectro-Catalyzed C–H Activation

5 Summary and Outlook

 
  • References

    • 1a Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem. 2019; 1: 63
    • 1b Yan M, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2018; 57: 4149
    • 1c Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 1d Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 1e Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 1f Lin S, Parry J, Fu N. Synlett 2018; 29: 257
    • 1g Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 1h Xu H.-C, Hou Z.-W, Mao Z.-Y. Synlett 2017; 28: 1867
    • 1i Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346
    • 1j Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 1k Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 1l Jutand A. Chem. Rev. 2008; 108: 2300
    • 1m See also: Kolbe H. Justus Liebigs Ann. Chem. 1860; 113: 125
    • 2a Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu Z, Hou Q, Bao D, Starr JT, Chen J, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
    • 2b Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature 2016; 533: 77
    • 2c Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
    • 2d O’Brien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG. Angew. Chem. Int. Ed. 2014; 53: 11868
    • 3a Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727
    • 3b Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. J. Am. Chem. Soc. 2017; 139: 12317
    • 3c Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 11801
    • 3d Lips S, Wiebe A, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 10872
    • 3e Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
    • 4a Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086
    • 4b Qiu Y, Struwe J, Meyer TH, Oliveira JC. A, Ackermann L. Chem. Eur. J. 2018; 24: 12784
    • 4c Ruan Z, Huang Z, Xu Z, Mo G, Tian X, Yu X.-Y, Ackermann L. Org. Lett. 2019; 21: 1237
    • 5a Hayashi R, Shimizu A, Yoshida J. J. Am. Chem. Soc. 2016; 138: 8400
    • 5b Morofuji T, Shimizu A, Yoshida J. J. Am. Chem. Soc. 2015; 137: 9816
    • 5c Morofuji T, Shimizu A, Yoshida J. J. Am. Chem. Soc. 2014; 136: 4496
    • 5d Morofuji T, Shimizu A, Yoshida J. J. Am. Chem. Soc. 2013; 135: 5000
    • 5e Ashikari Y, Shimizu A, Nokami T, Yoshida J. J. Am. Chem. Soc. 2013; 135: 16070
    • 5f Morofuji T, Shimizu A, Yoshida J. Angew. Chem. Int. Ed. 2012; 51: 7259
    • 5g Ashikari Y, Nokami T, Yoshida J. J. Am. Chem. Soc. 2011; 133: 11840
    • 6a Xiong P, Xu HH, Song J, Xu HC. J. Am. Chem. Soc. 2018; 140: 2460
    • 6b Folgueiras-Amador AA, Qian XY, Xu HC, Wirth T. Chem. Eur. J. 2018; 24: 487
    • 6c Zhao HB, Liu ZJ, Song J, Xu HC. Angew. Chem. Int. Ed. 2017; 56: 12732
    • 6d Xiong P, Xu HH, Xu HC. J. Am. Chem. Soc. 2017; 139: 2956
    • 6e Wu ZJ, Xu HC. Angew. Chem. Int. Ed. 2017; 56: 4734
    • 7a Wang P, Tang S, Huang P, Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
    • 7b Liu K, Tang S, Huang P, Lei A. Nat. Commun. 2017; 8: 775
    • 7c Llorente MJ, Nguyen BH, Kubiak CP, Moeller KD. J. Am. Chem. Soc. 2016; 138: 15110
    • 7d Jiang YY, Wang QQ, Liang S, Hu LM, Little RD, Zeng CC. J. Org. Chem. 2016; 81: 4713
    • 7e Francke R, Little RD. J. Am. Chem. Soc. 2014; 136: 427
    • 8a Ye KY, Song Z, Sauer GS, Harenberg JH, Fu N, Lin S. Chem. Eur. J. 2018; 24: 12274
    • 8b Ye KY, Pombar G, Fu N, Sauer GS, Keresztes I, Lin S. J. Am. Chem. Soc. 2018; 140: 2438
    • 8c Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
    • 8d Cai CY, Xu HC. Nat. Commun. 2018; 9: 3551
    • 8e Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 8f Fu N, Sauer GS, Lin S. J. Am. Chem. Soc. 2017; 139: 15548
    • 9a Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686
    • 9b Kawamata Y, Yan M, Liu Z, Bao DH, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
    • 9c Dudkina YB, Mikhaylov DY, Gryaznova TV, Tufatullin AI, Kataeva ON, Vicic DA, Budnikova YH. Organometallics 2013; 32: 4785
    • 10a Liu D, Ma H.-X, Fang P, Mei T.-S. Angew. Chem. Int. Ed. 2019; 58: 5033
    • 10b Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
    • 10c Imada Y, Rockl JL, Wiebe A, Gieshoff T, Schollmeyer D, Chiba K, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 12136
    • 10d Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
    • 10e Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu Z, Hou Q, Bao D, Starr JT, Chen J, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
    • 10f Gomes P, Gosmini C, Périchon J. J. Org. Chem. 2003; 68: 1142
    • 10g Gomes P, Gosmini C, Nédélec J.-Y, Périchon J. Tetrahedron Lett. 2002; 43: 5901
  • 11 Peterson BM, Lin S, Fors BP. J. Am. Chem. Soc. 2018; 140: 2076
  • 12 Qiu Y, Scheremetjew A, Ackermann L. J. Am. Chem. Soc. 2019; 141: 2731
    • 13a Sauermann N, Meyer TH, Ackermann L. Chem. Eur. J. 2018; 24: 16209
    • 13b Yang Q.-L, Fang P, Mei T.-S. Chin. J. Chem. 2018; 36: 338
    • 13c Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
    • 13d Karkas MD. Chem. Soc. Rev. 2018; 47: 5786
    • 13e Jiao K.-J, Zhao C.-Q, Fang P, Mei T.-S. Tetrahedron Lett. 2017; 58: 797
    • 14a Shrestha A, Lee M, Dunn AL, Sanford MS. Org. Lett. 2018; 20: 204
    • 14b Yang QL, Li YQ, Ma C, Fang P, Zhang XJ, Mei TS. J. Am. Chem. Soc. 2017; 139: 3293
    • 14c Ma C, Zhao CQ, Li YQ, Zhang LP, Xu XT, Zhang K, Mei TS. Chem. Commun. 2017; 53: 12189
    • 14d Li YQ, Yang QL, Fang P, Mei TS, Zhang D. Org. Lett. 2017; 19: 2905
    • 14e Konishi M, Tsuchida K, Sano K, Kochi T, Kakiuchi F. J. Org. Chem. 2017; 82: 8716
    • 14f Grayaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova Y. Н. J. Organomet. Chem. 2015; 785: 68
    • 14g Saito F, Aiso H, Kochi T, Kakiuchi F. Organometallics 2014; 33: 6704
    • 14h Aiso H, Kochi T, Mutsutani H, Tanabe T, Nishiyama S, Kakiuchi F. J. Org. Chem. 2012; 77: 7718
    • 14i Dudkina YB, Mikhaylov DY, Gryaznova TV, Sinyashin OG, Vicic DA, Budnikova YH. Eur. J. Org. Chem. 2012; 2114
    • 14j Kakiuchi F, Kochi T, Mutsutani H, Kobayashi N, Urano S, Sato M, Nishiyama S, Tanabe T. J. Am. Chem. Soc. 2009; 131: 11310
    • 14k Amatore C, Cammoun C, Jutand A. Adv. Synth. Catal. 2007; 349: 292; and references cited therein
    • 15a Tian C, Massignan L, Meyer TH, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 2383
    • 15b Tang S, Wang D, Liu Y, Zeng L, Lei A. Nat. Commun. 2018; 9: 798
    • 15c Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5090
    • 15d Meyer TH, Oliveira JC. A, Sau SC, Ang NW. J, Ackermann L. ACS Catal. 2018; 8: 9140
    • 15e Gao X, Wang P, Zeng L, Tang S, Lei A. J. Am. Chem. Soc. 2018; 140: 4195
    • 15f Mei R, Sauermann N, Oliveira JC. A, Ackermann L. J. Am. Chem. Soc. 2018; 140: 7913
    • 15g Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
    • 16a Luo MJ, Hu M, Song RJ, He DL, Li JH. Chem. Commun. 2019; 55: 1124
    • 16b Xu F, Li Y.-J, Huang C, Xu H.-C. ACS Catal. 2018; 8: 3820
    • 16c Qiu Y, Tian C, Massignan L, Rogge T, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5818
    • 16d Mei R, Koeller J, Ackermann L. Chem. Commun. 2018; 54: 12879
  • 17 Qiu Y, Kong WJ, Struwe J, Sauermann N, Rogge T, Scheremetjew A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5828
  • 18 Qiu Y, Stangier M, Meyer TH, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14179
  • 19 Zhang SK, Samanta RC, Sauermann N, Ackermann L. Chem. Eur. J. 2018; 24: 19166
    • 20a Yang QL, Wang XY, Lu JY, Zhang LP, Fang P, Mei T.-S. J. Am. Chem. Soc. 2018; 140: 11487
    • 20b Kathiravan S, Suriyanarayanan S, Nicholls IA. Org. Lett. 2019; 21: 1968
    • 21a De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
    • 21b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788

      Recent reviews:
    • 22a Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 22b Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 22c Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 22d Ma W, Gandeepan P, Li J, Ackermann L. Org. Chem. Front. 2017; 4: 1435
    • 22e Zheng QZ, Jiao N. Chem. Soc. Rev. 2016; 45: 4590
    • 22f He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2016; 117: 8754
    • 22g Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 22h Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 22i Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 22j Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 22k Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 22l Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792

      Selected contributions:
    • 23a Bu Q, Rogge T, Kotek V, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 765
    • 23b Bechtoldt A, Tirler C, Raghuvanshi K, Warratz S, Kornhaass C, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 264
    • 23c Warratz S, Kornhaaß C, Cajaraville A, Niepötter B, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 5513
    • 23d Yang F, Rauch K, Kettelhoit K, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 11285
    • 23e Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 23f Kozhushkov SI, Ackermann L. Chem. Sci. 2013; 4: 886
    • 23g Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 23h Yang Y, Lin Y, Rao Y. Org. Lett. 2012; 14: 2874
    • 23i Hasegawa N, Charra V, Inoue S, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 8070
    • 23j Ackermann L, Lygin AV, Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
    • 23k Ackermann L, Vicente R. Top. Curr. Chem. 2010; 292: 211
    • 23l Ackermann L, Novak P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
    • 23m Ackermann L. Synlett 2007; 507
    • 24a Tan E, Quinonero O, Elena de Orbe M, Echavarren AM. ACS Catal. 2018; 8: 2166
    • 24b Zell D, Bursch M, Muller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
    • 24c Ma W, Mei R, Tenti G, Ackermann L. Chem. Eur. J. 2014; 20: 15248

      Representative contributions:
    • 25a Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
    • 25b Wang C, Sun H, Fang Y, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 5795
    • 25c Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 25d Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 3024
    • 25e Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
    • 25f Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 25g Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407

      Selected examples:
    • 26a Tan G, You Q, Lan J, You J. Angew. Chem. Int. Ed. 2018; 57: 6309
    • 26b Shin K, Park Y, Baik MH, Chang S. Nat. Chem. 2018; 10: 218
    • 26c Hong SY, Park Y, Hwang Y, Kim YB, Baik M.-H, Chang S. Science 2018; 359: 1016
    • 26d Chen C, Liu P, Tang J, Deng G, Zeng X. Org. Lett. 2017; 19: 2474
    • 26e Suzuki C, Hirano K, Satoh T, Miura M. Org. Lett. 2015; 17: 1597
    • 26f Kim J, Park SW, Baik MH, Chang S. J. Am. Chem. Soc. 2015; 137: 13448
    • 26g Kim H, Chang S. ACS Catal. 2015; 5: 6665
    • 26h Huang L, Hackenberger D, Gooßen LJ. Angew. Chem. Int. Ed. 2015; 54: 12607
    • 26i Gao P, Guo W, Xue J, Zhao Y, Yuan Y, Xia Y, Shi Z. J. Am. Chem. Soc. 2015; 137: 12231
    • 26j Kim J, Chang S. Angew. Chem. Int. Ed. 2014; 53: 2203
    • 26k Kim H, Shin K, Chang S. J. Am. Chem. Soc. 2014; 136: 5904
    • 26l Arndtsen BA, Bergman RG. Science 1995; 270: 1970; and cited references
    • 27a Lionetti D, Day VW, Lassalle-Kaiser B, Blakemore JD. Chem. Commun. 2018; 54: 1694
    • 27b Lionetti D, Day VW, Blakemore JD. Organometallics 2017; 36: 1897
  • 28 Nguyen BH, Redden A, Moeller KD. Green Chem. 2014; 16: 69
    • 29a Ackermann L, Vicente R, Althammer A. Org. Lett. 2008; 10: 2299
    • 29b Ackermann L. Chem. Rev. 2011; 111: 1315