Synthesis 2019; 51(17): 3214-3220
DOI: 10.1055/s-0037-1611535
paper
© Georg Thieme Verlag Stuttgart · New York

Photoredox Fischer Indole Synthesis

Atsushi Kaga
a   Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan   Email: kitamura@os.rcms.nagoya-u.ac.jp
,
Tomohiro Fukushima
b   Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
,
c   Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: shimokawa@kuchem.kyoto-u.ac.jp
,
Masato Kitamura*
a   Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan   Email: kitamura@os.rcms.nagoya-u.ac.jp
› Author Affiliations
This work was supported by the Kato Memorial Bioscience Foundation, a Mitsubishi Tanabe Pharma Award in Synthetic Organic Chemistry, Japan, JSPS KAKENHI Grant Numbers 23590003, 25221301, 15H05641, the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C) from the Japan Science and Technology Agency (JST).
Further Information

Publication History

Received: 25 February 2019

Accepted after revision: 16 April 2019

Publication Date:
09 May 2019 (online)


Abstract

Visible light photoredox conditions were applied to the traditional Fischer indole synthesis. N,N-Diarylhydrazones were efficiently converted into the corresponding indoles even at 30 °C by treatment with bromotrichloromethane in the presence of Ru(bpy)3Cl2·6H2O as the photocatalyst. Electrochemical study revealed the viability of oxidative quenching cycle for the photocatalysis, which set the basis for proposing the redox-based reaction mechanism.

Supporting Information

 
  • References

    • 1a Robinson B. Chem. Rev. 1963; 63: 373
    • 1b Robinson B. Chem. Rev. 1969; 69: 227
    • 1c Robinson B. The Fischer Indole Synthesis . John Wiley & Sons; New York: 1982
    • 1d Hughes DL. Org. Prep. Proced. Int. 1993; 25: 607
  • 2 Fitzpatrick JT, Hiser RD. J. Org. Chem. 1957; 22: 1703
    • 3a Fischer E. Justus Liebigs Ann. Chem. 1886; 236: 198
    • 3b Kissman HM, Farnsworth DW, Witkop B. J. Am. Chem. Soc. 1952; 74: 3948
    • 3c Schiess P, Sendi E. Helv. Chim. Acta 1978; 61: 1364
    • 3d Baccolini G, Todesco PE. J. Chem. Soc., Chem. Commun. 1981; 563
    • 3e Maruoka K, Oishi M, Yamamoto H. J. Org. Chem. 1993; 58: 7638
    • 3f Rebeiro GL, Khadilkar BM. Synthesis 2001; 370
    • 3g Mhaske SB, Argade NP. Tetrahedron 2004; 60: 3417
    • 3h Dhakshinamoorthy A, Pitchumani K. Appl. Catal., A 2005; 292: 305
    • 3i Lipińska TM, Czarnocki SJ. Org. Lett. 2006; 8: 367
    • 4a Miyata O, Kimura Y, Muroya K, Hiramatsu H, Naito T. Tetrahedron Lett. 1999; 40: 3601
    • 4b Miyata O, Kimura Y, Naito T. Chem. Commun. 1999; 2429
    • 4c Miyata O, Kimura Y, Naito T. Synthesis 2001; 1635
    • 4d Miyata O, Takeda N, Kimura Y, Takemoto Y, Tohnai N, Miyata M, Naito T. Tetrahedron 2006; 62: 3629
    • 4e Miyata O, Takeda N, Naito T. J. Synth. Org. Chem. Jpn. 2006; 64: 1282
    • 5a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 5b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 5d Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 5e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 6a Noviandri I, Brown KN, Fleming DS, Gulyas PT, Lay PA, Masters AF, Phillips L. J. Phys. Chem. B 1999; 103: 6713
    • 6b Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications . John Wiley & Sons; New York: 2001
  • 7 Kalyanasundaram K. Coord. Chem. Rev. 1982; 46: 159
  • 8 Murayama E, Kohda A, Sato T. J. Chem. Soc., Perkin Trans. 1 1980; 947
  • 9 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 10 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 11 Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
  • 12 Haga M, Dodsworth ES, Eryavec G, Seymour P, Lever AB. P. Inorg. Chem. 1985; 24: 1901
  • 13 Wayner DD. M, Dannenberg JJ, Griller D. Chem. Phys. Lett. 1986; 131: 189
  • 14 Schiesser CH, Wille U, Matsubara H, Ryu I. Acc. Chem. Res. 2007; 40: 303
    • 15a Kharasch MS, Reinmuth O, Urry WH. J. Am. Chem. Soc. 1947; 69: 1105
    • 15b Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
    • 15c Nauth AM, Orejarena Pacheco JC, Pusch S, Opatz T. Eur. J. Org. Chem. 2017; 6966
  • 16 He L, Pian J.-X, Shi J.-F, Du G.-F, Dai B. Tetrahedron 2014; 70: 2400
  • 17 Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627