Synthesis 2019; 51(06): 1455-1465
DOI: 10.1055/s-0037-1611354
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of β,β-Diaryl α,β-Unsaturated Ketones

Yi-lin Zheng
a  Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai 201203, P. R. of China
,
Li Xiao
a  Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai 201203, P. R. of China
,
Qiong Xie
a  Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai 201203, P. R. of China
,
Li-ming Shao*
a  Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai 201203, P. R. of China
b  State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. of China   Email: limingshao@fudan.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (No. 81473076 and 81673292), the National Basic Research Program of China (973 Program, 2015CB931804), and the Science and Technology Commission of Shanghai Municipality (No. 15431900100) is gratefully acknowledged.
Further Information

Publication History

Received: 27 July 2018

Accepted after revision: 23 October 2018

Publication Date:
03 December 2018 (eFirst)

Abstract

We herein describe a versatile palladium-catalyzed synthesis of β,β-diaryl α,β-unsaturated ketones. A broad range of aryl halides react with β-arylbutanones to afford biologically useful, symmetrical and unsymmetrical ketones. The use of 4,5-diazafluoren-9-one and oxygen makes this one-pot reaction more applicable. A plausible mechanism involving palladium-catalyzed oxidative Heck-type cross-coupling is also proposed.

Supporting Information

 
  • References

    • 1a Welch WM, Kraska AR, Sarges R, Koe BK. J. Med. Chem. 1984; 27: 1508
    • 1b Murdoch D, McTavish D. Drugs 1992; 44: 604
    • 1c Chen G, Xia H, Cai Y, Ma D, Yuan J, Yuan C. Bioorg. Med. Chem. Lett. 2011; 21: 234
    • 1d Shen Q, Qian Y, Huang X, Xu X, Li W, Liu J, Fu W. ACS Med. Chem. Lett. 2016; 7: 391
    • 1e Saku O, Ishida H, Atsumi E, Sugimoto Y, Kodaira H, Kato Y, Shirakura S, Nakasato Y. J. Med. Chem. 2012; 55: 3436
    • 2a Tiwari PK, Aidhen IS. Eur. J. Org. Chem. 2016; 2637
    • 2b Xiao L, Zheng Y, Xie Q, Shao L. Eur. J. Org. Chem. 2017; 5880
    • 2c Zhu ZQ, He JS, Wang HJ, Huang ZZ. J. Org. Chem. 2015; 80: 9354
    • 2d Le Bras J, Muzart J. Adv. Synth. Catal. 2018; 360: 2411
    • 3a Kondolff I, Doucet H, Santelli M. Tetrahedron Lett. 2003; 44: 8487
    • 3b Yokota T, Tani M, Sakaguchi S, Ishii Y. J. Am. Chem. Soc. 2003; 125: 1476
    • 3c Tani M, Sakaguchi S, Ishii Y. J. Org. Chem. 2004; 69: 1221
    • 3d Botella L, Nájera C. J. Org. Chem. 2005; 70: 4360
  • 4 Jin W, Du W, Yang Q, Yu H, Chen J, Yu Z. Org. Lett. 2011; 13: 4272
  • 5 Bethi V, Fernandes RA. J. Org. Chem. 2016; 81: 8577
  • 6 Rosa D, Orellana A. Org. Lett. 2011; 13: 3648
  • 7 Ryabukhin DS, Vasilyev AV. Mendeleev Commun. 2016; 26: 500
  • 8 Gandeepan P, Rajamalli P, Cheng C.-H. ACS Catal. 2014; 4: 4485
    • 9a Qi C, Sun X, Lu C, Yang J, Du Y, Wu H, Zhang X.-M. J. Organomet. Chem. 2009; 694: 2912
    • 9b Wang L, Lu W. Org. Lett. 2009; 11: 10792
    • 9c Hajipour AR, Rafiee F. Synth. Commun. 2013; 43: 1314
    • 9d Afsaneh F, Ayoob B, Balu AM, Rafael L. Sci. Rep. 2016; 6: 32719
    • 9e Lane BS, Sames D. Org. Lett. 2004; 6: 2897
    • 10a Diao T, Wadzinski TJ, Stahl SS. Chem. Sci. 2012; 3: 887
    • 10b Gao W, He Z, Qian Y, Zhao J, Huang Y. Chem. Sci. 2012; 3: 883
    • 11a Shang Y, Jie X, Zhou J, Hu P, Huang S, Su W. Angew. Chem. Int. Ed. 2013; 52: 1299
    • 11b Yip K.-T, Nimje RY, Leskinen MV, Pihko PM. Chem. Eur. J. 2012; 18: 12590
  • 12 Izawa Y, Pun D, Stahl SS. Science 2011; 333: 209
  • 13 Muzart J. Eur. J. Org. Chem. 2010; 3779
    • 14a Konnick MM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 5753
    • 14b Decharin N, Popp BV, Stahl SS. J. Am. Chem. Soc. 2011; 133: 13268
    • 14c Iosub AV, Stahl SS. ACS Catal. 2016; 6: 8201
    • 14d Gligorich KM, Sigman MS. Angew. Chem. Int. Ed. 2006; 45: 6612
    • 14e Muzart J. Chem. Asian J. 2006; 1: 508
    • 14f Scheuermann ML, Goldberg KI. Chem. Eur. J. 2014; 20: 14556
  • 15 Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
  • 16 Vasseur A, Laugel C, Harakat D, Muzart J, Le Bras J. Eur. J. Org. Chem. 2015; 944
  • 17 Larock RC, Hightower TR. J. Org. Chem. 1993; 58: 5298
  • 18 Tamaru Y, Yamamoto Y, Yamada Y, Yoshida ZI. Tetrahedron Lett. 1979; 1401
  • 19 Roman G, Riley JG, Vlahakis JZ, Kinobe RT, Brien JF, Nakatsu K, Szarek WA. Bioorg. Med. Chem. 2007; 15: 3225
  • 20 Cao JJ, Zhou F, Zhou J. Angew. Chem. Int. Ed. 2010; 49: 4976
  • 21 Shchukin AO, Vasilyev AV. Appl. Catal., A 2008; 336: 140
    • 22a Engel DA, Dudley GB. Org. Lett. 2006; 8: 4027
    • 22b Uyanik M, Fukatsu R, Ishihara K. Org. Lett. 2009; 11: 3470
  • 23 Singh G, Purkayastha ML, Ila H, Junjappa H. J. Chem. Soc., Perkin Trans. 1 1985; 1289