Synthesis 2019; 51(06): 1473-1481
DOI: 10.1055/s-0037-1610999
paper
© Georg Thieme Verlag Stuttgart · New York

Base-Catalyzed Tandem Cyclization: Diastereoselective Access to the 3,4-Dihydroisoquinolin-2(1H)-one Core

Prashishkumar K. Shirsat
a   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
b   Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India   eMail: hmmeshram@yahoo.com
,
Navnath B. Khomane
a   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
b   Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India   eMail: hmmeshram@yahoo.com
,
Sneha H. Meshram
a   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
b   Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India   eMail: hmmeshram@yahoo.com
,
Balasubramanian Sridhar
c   Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
,
Harshadas M. Meshram*
b   Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India   eMail: hmmeshram@yahoo.com
,
Ravindra M. Kumbhare*
d   Fluoroorganic Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India   eMail: kumbhare@iict.res.in
› Institutsangaben
The authors thank CSIR, New Delhi for financial support as part of the XII five-year plan program under the title ACT ().
Weitere Informationen

Publikationsverlauf

Received: 01. August 2018

Accepted after revision: 05. September 2018

Publikationsdatum:
14. November 2018 (online)


Abstract

A novel, one-pot reaction for the synthesis of 3,4-dihydroisoquinolin-2(1H)-one derivatives is developed via a base-mediated three-component reaction of ninhydrin, aniline and acetylenic esters. This diastereoselective reaction takes place in methanol at 70 °C under transition-metal-free conditions, and direct construction of the C–N and C–C bonds is readily achieved via tandem cyclization. These cyclic frameworks are resourceful small molecular keys to many natural products.

Supporting Information

 
  • References

    • 2a Cappelli A. Pericot Mohr G. Giuliani G. Galeazzi S. Anzini M. Mennuni L. Ferrari F. Makovec F. Kleinrath EM. Langer T. Valoti M. Giorgi G. Vomero S. J. Med. Chem. 2006; 49: 6451
    • 2b Khadka DB. Yang SH. Cho SH. Zhao C. Cho W.-J. Tetrahedron 2012; 68: 250
    • 2c Matsui T. Sugiura T. Nakai H. Iguchi S. Shigeoka S. Takada H. Odagaki Y. Nagao Y. Ushio Y. J. Med. Chem. 1992; 35: 3307
    • 3a Thompson RC. Kallmerten J. J. Org. Chem. 1990; 55: 6076
    • 3b Asano Y. Kitamura S. Ohra T. Itoh F. Kajino M. Tamura T. Kaneko M. Ikeda S. Igata H. Kawamoto T. Sogabe S. Matsumoto S. Tanaka T. Yamaguchi M. Kimura H. Fukumoto S. Bioorg. Med. Chem. 2008; 16: 4699
    • 3c Snow RJ. Cardozo MG. Morwick TM. Busacca CA. Dong Y. Echner RJ. Jakes S. Kapadia S. Lukas S. Moss N. Panzenbeck M. Peet GW. Peterson JD. Prokopowicz AP. Sellati R. Tschantz MA. J. Med. Chem. 2002; 45: 3394
    • 4a Krane BD. Shamma M. J. Nat. Prod. 1982; 45
    • 4b Chern MS. Li WR. Tetrahedron Lett. 2004; 45: 8323
    • 4c Xiang Z. Luo T. Lu K. Cui J. Shi X. Fathi R. Chen J. Yang Z. Org. Lett. 2004; 6: 3155
  • 5 Umarov KS. Ismailov ZF. Yunusov SY. Chem. Nat. Compd. 1973; 6: 452
  • 6 Leese MP. Jourdan FL. Major MR. Dohle W. Thomas MP. Hamel E. Ferrandis E. Mahon MF. Newman SP. Purohit A. Potter BV. L. ChemMedChem 2014; 9: 798
  • 7 Zhou D. Gross JL. Adedoyin AB. Aschmies SB. Brennan J. Bowlby M. Di L. Kubek K. Platt BJ. Wang Z. Zhang G. Brandon N. Comery TA. Robichaud AJ. J. Med. Chem. 2012; 55: 2452
    • 8a Billamboz M. Bailly F. Lion C. Touati N. Vezin H. Calmels C. Andreola M. Christ F. Debyser Z. Cotelle P. J. Med. Chem. 2011; 54: 1812
    • 8b Billamboz M. Suchaud V. Bailly F. Lion C. Demeulemeester J. Calmels C. Andreola M. Christ F. Debyser Z. Cotelle P. ACS Med. Chem. 2013; 4: 606
    • 8c Tsou H. Otteng M. Tran T. Floyd MB. Reich MJr. Birnberg G. Kutterer K. Kaloustian SA. Ravi M. Nilakantan R. Grillo M. McGinnis JP. Rabindran SK. J. Med. Chem. 2008; 51: 3507
    • 8d Komoda M. Kakuta H. Takahashi H. Fujimoto Y. Kadoya S. Kato F. Hashimoto Y. Bioorg. Med. Chem. 2001; 9: 121
  • 10 Shirsat PK. Khomane NB. Mali PR. Reddy Maddi R. Nanubolu JB. Meshram HM. ChemistrySelect 2017; 2: 11218
    • 11a Peng S. Liu S. Zhang S. Cao S. Sun J. Org. Lett. 2015; 17: 5032
    • 11b Qiu Y.-F. Zhu X.-Y. Li Y.-X. He Y.-T. Yang F. Wang J. Hua H.-L. Zheng L. Wang L.-C. Liu X.-Y. Liang Y.-M. Org. Lett. 2015; 17: 3694
    • 11c Sang P. Xie Y. Zou J. Zhang Y. Adv. Synth. Catal. 2012; 354: 1873
    • 11d Yi X. Xi C. Org. Lett. 2015; 17: 5836
    • 11e Li J. Huang R. Xing Y.-K. Qiu G. Tao H.-Y. Wang C.-J. J. Am. Chem. Soc. 2015; 137: 10124
    • 12a Würtz S. Rakshit S. Neumann JJ. Droge T. Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 12b Varala R. Nuvula S. Adapa SR. Aust. J. Chem. 2006; 59: 921
    • 12c Jenner G. Tetrahedron Lett. 1996; 37: 3691
    • 13a Sagar A. Vidaycharan S. Shinde AH. Sharada DS. Org. Biomol. Chem. 2016; 14: 4018
    • 13b Choudhary G. Peddinti RK. Green Chem. 2011; 13: 3290
    • 13c Brandt CA. da Silva AC. M. P. Pancote CG. Brito CL. da Silveira MA. B. Synthesis 2004; 1557
  • 14 Yavari I. Seyfi S. Nematpour M. Hossaini Z. Helv. Chim. Acta 2010; 93: 1413
    • 15a Sun M.-Y. Meng X.-Y. Zhao F.-J. Dang Y.-J. Jiang F. Liu K. Wang C.-S. Jiang B. Tu S.-J. Eur. J. Org. Chem. 2014; 3690
    • 15b Muthusaravanan S. Sasikumar C. Bala BD. Perumal S. Green Chem. 2014; 16: 1297
    • 15c Yavari I. Arab-Salmanabadi S. Aminkhani A. J. Iran Chem. Soc. 2012; 9: 503
    • 15d Alizadeh A. Ghanbaripour R. Feizabadi M. Zhu L.-G. Dusek M. RSC Adv. 2015; 5: 80518