Synthesis 2019; 51(10): 2128-2135
DOI: 10.1055/s-0037-1610864
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Chiral Triazole-Based Halogen Bond Donors

,
Sandra Kaabel
,
Kadri Kriis
,
Ivar Järving
,
Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia   Email: tonis.kanger@taltech.ee
› Author Affiliations
The authors thank the Estonian Ministry of Education and Research (Grant Nos. IUT 19-32, IUT 19-9, and PUT1468), the Centre of Excellence in Molecular Cell Engineering, and the Archimedes Foundation (2014-2020.4.01.15-0013) for financial support.
Further Information

Publication History

Received: 28 December 2018

Accepted after revision: 02 February 2019

Publication Date:
12 March 2019 (online)


Abstract

The number of applications that use halogen bonding in the fields of self-assembly, supramolecular aggregation, and catalysis is growing. However, the accessibility of chiral halotriazoles shows that there is still a lot more to explore. The simple click-chemistry is applied for the straightforward synthesis of enantiomerically pure mono- and bidentate as well as multifunctional iodotriazole-based XB donors. The methodology is characterized by a wide variability due to easy access of chiral azides.

Supporting Information

 
  • References

  • 1 Mahadevi AS, Sastry GN. Chem. Rev. 2016; 116: 2775

    • For recent reviews, see:
    • 2a Politzer P, Murray JS. ChemPhysChem 2013; 14: 278
    • 2b Beale TM, Chudzinski MG, Sarwar MG, Taylor MS. Chem. Soc. Rev. 2013; 42: 1667
    • 2c Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. Chem. Rev. 2015; 115: 7118
    • 2d Bulfield D, Huber SM. Chem. Eur. J. 2016; 22: 14434
    • 2e Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
    • 2f Mendez L, Henriquez G, Sirimulla S, Narayan M. Molecules 2017; 22: 1397
    • 2g Kolář MH, Tabarrini O. J. Med. Chem. 2017; 60: 8681
    • 2h Tepper R, Schubert US. Angew. Chem. Int. Ed. 2018; 57: 6004
  • 3 Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K. Pure Appl. Chem. 2013; 85: 1711
  • 4 Clark T, Hennemann M, Murray JS, Politzer P. J. Mol. Model. 2007; 13: 291
    • 6a Hassel O, Hvoslef J. Acta Chem. Scand. 1954; 8: 873
    • 6b Zingaro R, Hedges R. J. Phys. Chem. 1961; 65: 1132
    • 7a Cabot R, Hunter CA. Chem. Commun. 2009; 2005
    • 7b Sarwar MG, Dragisic B, Salsberg LJ, Gouliaras C, Taylor MS. J. Am. Chem. Soc. 2010; 132: 1646
    • 7c Dumele O, Wu D, Trapp N, Goroff N, Diederich F. Org. Lett. 2014; 16: 4722
    • 8a Raatikainen K, Rissanen K. Chem. Sci. 2012; 3: 1235
    • 8b Puttreddy R, Jurček O, Bhowmik S, Mäkelä T, Rissanen K. Chem. Commun. 2016; 52: 2338
    • 9a Xu K, Ho DM, Pascal RA. J. Org. Chem. 1995; 60: 7186
    • 9b Maugeri L, Asencio-Hernandez J, Lebl T, Cordes DB, Slawin A, Delsuc M.-A, Philp D. Chem. Sci. 2016; 7: 6422
    • 9c Sabater P, Zapata F, López B, Fernández I, Caballero A, Molina P. Dalton Trans. 2018; 47: 15941
    • 10a Cametti M, Raatikainen K, Metrangolo P, Pilati T, Terraneoa G, Resnati G. Org. Biomol. Chem. 2012; 10: 1329
    • 10b Tepper R, Schulze B, Jäger M, Friebe C, Scharf DH, Görls H, Schubert US. J. Org. Chem. 2015; 80: 3139
    • 10c Riel AM. S, Decato DA, Sun J, Massena CJ, Jessop MJ, Berryman OB. Chem. Sci. 2018; 9: 5828
    • 11a Kuijpers BH. M, Dijkmans GC. T, Groothuys S, Quaedflieg PJ. L. M, Blaauw RH, van Delft FL, Rutjes FP. J. T. Synlett 2005; 3059
    • 11b Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV. Angew. Chem. Int. Ed. 2009; 48: 8018
    • 11c García-Álvarez J, Díez J, Gimeno J. Green Chem. 2010; 12: 2127
    • 11d Pérez JM, Crosbie P, Lal S, Díez-González S. ChemCatChem 2016; 8: 2222
    • 12a Barsoum D, Brassard CJ, Deeb JH. A, Okashah N, Sreenath K, Simmons JT, Zhu L. Synthesis 2013; 45: 2372
    • 12b Li L, Hao G, Zhu A, Liu S, Zhang G. Tetrahedron Lett. 2013; 54: 6057
    • 12c Barsoum DN, Okashah N, Zhang X, Zhu L. J. Org. Chem. 2015; 80: 9542
    • 12d Li L, Xing X, Zhang C, Zhu A, Fan X, Chen G, Zhang G. Tetrahedron Lett. 2018; 59: 3563
    • 13a Tepper R, Schulze B, Bellstedt P, Heidler J, Görls H, Jägerab M, Schubert US. Chem. Commun. 2017; 53: 2260
    • 13b Zhou L, Lu Y, Xu Z, Peng C, Liu H. Struct. Chem. 2018; 29: 533
    • 14a Mercurio JM, Knighton RC, Cookson J, Beer PD. Chem. Eur. J. 2014; 20: 11740
    • 14b Borissov A, Lim JY. C, Brown A, Christensen KE, Thompson AL, Smith MD, Beer PD. Chem. Commun. 2017; 53: 2483
    • 14c Mungalpara D, Stegmüller S, Kubik S. Chem. Commun. 2017; 53: 5095
    • 15a Kniep F, Rout L, Walter SM, Bensch HK. V, Jungbauer SH, Herdtweck E, Huber SM. Chem. Commun. 2012; 48: 9299
    • 15b Jungbauer SH, Huber SM. J. Am. Chem. Soc. 2015; 137: 12110
    • 15c von der Heiden D, Detmar E, Kuchta R, Breugst M. Synlett 2017; 28: 1307
    • 15d Haraguchi R, Hoshino S, Sakai M, Tanazawa S, Morita Y, Komatsu T, Fukuzawa S. Chem. Commun. 2018; 54: 10320
    • 15e Dreger A, Engelage E, Mallick B, Beer PD, Huber SM. Chem. Commun. 2018; 5: 4013
  • 16 Tepper R, Bode S, Geitner R, Jäger M, Görls H, Vitz J, Dietzek B, Schmitt M, Popp J, Hager MD, Schubert US. Angew. Chem. Int. Ed. 2017; 56: 4047
    • 17a Kilah NL, Wise MD, Serpell CJ, Thompson AL, White NG, Christensen KE, Beer PD. J. Am. Chem. Soc. 2010; 132: 11893
    • 17b Kilah NL, Wise MD, Beer PD. Cryst. Growth Des. 2011; 11: 4565
  • 18 Kaasik M, Kaabel S, Kriis K, Järving J, Aav R, Rissanen K, Kanger T. Chem. Eur. J. 2017; 23: 7337
  • 19 Lim JY. C, Marques I, Félix V, Beer PD. J. Am. Chem. Soc. 2017; 139: 12228
    • 20a Lim JY. C, Marques I, Ferreira L, Félix V, Beer PD. Chem. Commun. 2016; 52: 5527
    • 20b González L, Zapata F, Caballero A, Molina P, de Arellano V, Alkorta I, Elguero J. Chem. Eur. J. 2016; 22: 7533
    • 20c Lim JY. C, Marques I, Félix V, Beer PD. Chem. Commun. 2018; 54: 10851
  • 21 Kaik M, Gawroński J. Tetrahedron: Asymmetry 2003; 14: 1559
  • 22 Goddard-Borger ED, Stick RV. Org. Lett. 2007; 9: 3797
  • 23 Probst N, Madarsz A, Valkonen A, Papai I, Rissanen K, Neuvonen A, Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 8495