Subscribe to RSS
DOI: 10.1055/s-0037-1610785
A New Synthetic Route to (Trifluoromethyl)quinolines: Nickel-Catalyzed Insertion of an Alkyne into an Aromatic C–S Bond by Formation of a Thianickelacycle and Thermal Desulfidation
This work was supported by Grants-in-Aid for Scientific Research (Nos. 20H02737, 18H04253 and 17KT0006) from the Ministry of Education, Culture, Sports, Science and Technology (Japan).

Abstract
We have developed a nickel-catalyzed insertion reaction of an alkyne into a 2-(trifluoromethyl)-1,3-benzothiazole to give a seven-membered benzothiazepine that is converted into a 2-(trifluoromethyl)quinoline by thermal desulfidation. This process can be considered a formal substitution of a sulfur atom with an alkyne. The structure of the thianickelacycle intermediate formed through oxidative addition of a C–S bond in the benzothiazole to nickel(0) was confirmed by X-ray single-crystal structure analysis and in situ X-ray absorption fine-structure spectroscopy.
Key words
nickel catalysis - cycloaddition - desulfidation - alkynes - benzothiazoles - trifluoromethylquinolinesSupporting Information
- Supporting information for this article is available online at
https://doi.org/10.1055/s-0037-1610785.
- Supporting Information
- CIF File
Publication History
Received: 30 August 2021
Accepted after revision: 13 September 2021
Article published online:
05 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Amii H, Kishikawa Y, Uneyama K. Org. Lett. 2001; 3: 1109
- 1b Chen Z, Zhu J, Xie H, Li S, Wu Y, Gong Y. Chem. Commun. 2010; 46: 2145
- 1c Han J, Cao L, Bian L, Chen J, Deng H, Shao M, Jin Z, Zhang H, Cao W. Adv. Synth. Catal. 2013; 355: 1345
- 1d Li Y, Zhang L, Zhan L, Wu Y, Gong Y. Org. Biomol. Chem. 2013; 11: 7267
- 1e Linderman RJ, Kirollos KS. Tetrahedron Lett. 1990; 31: 2689
- 1f Han J, Li L, Shen Y, Chen J, Deng H, Shao M, Lu X, Zhang H, Cao W. Eur. J. Org. Chem. 2013; 8323
- 1g Chen Y, Huang J, Hwang T.-L, Li TJ, Cui S, Chan J, Bio M. Tetrahedron Lett. 2012; 53: 3237
- 1h Dong X, Xu Y, Liu JJ, Hu Y, Xiao T, Zhou L. Chem. Eur. J. 2013; 19: 16928
- 1i Li S, Yuan Y, Zhu J, Xie H, Chen Z, Wu Y. Adv. Synth. Catal. 2010; 352: 1582
- 1j Sloop HC, Bumgardner CL, Loehle WD. J. Fluorine Chem. 2002; 118: 135
- 1k Keller H, Schlosser M. Tetrahedron 1996; 52: 4637
- 1l Braznenok IL, Nenajdenko VG, Balenkova ES. Eur. J. Org. Chem. 1999; 937
- 1m Zhu M, Wang Z, Xu F, Yu J, Fu W. J. Fluorine Chem. 2013; 156: 21
- 1n Zhu M, Fu W, Zou G, Xun C, Deng D, Ji B. J. Fluorine Chem. 2012; 135: 195
- 1o El Kharrat S, Skander M, Dahmani A, Laurent P, Blancou H. J. Org. Chem. 2005; 70: 8327
- 2a Hua R, Takeda H, Onozawa S.-y, Abe Y, Tanaka M. J. Am. Chem. Soc. 2001; 123: 2899
- 2b Sugoh K, Kuhiyasu H, Sugae T, Ohtaka A, Takai Y, Tanaka A, Machino C, Kambe N, Kurosawa H. J. Am. Chem. Soc. 2001; 123: 5108
- 2c Kuniyasu H, Kurosawa H. Chem. Eur. J. 2002; 8: 2660
- 2d Hirai T, Kuniyasu H, Kambe N. Chem. Lett. 2004; 33: 1148
- 2e Hirai T, Kuniyasu H, Asano S, Terao J, Kambe N. Synlett 2005; 1161
- 2f Kuniyasu H, Kambe N. Chem. Lett. 2006; 35: 1320
- 2g Kamiya I, Kawakami J.-i, Yano S, Nomoto A, Ogawa A. Organometallics 2006; 25: 3562
- 2h Yamashita F, Kuniyasu H, Terao J, Kambe N. Org. Lett. 2008; 10: 101
- 2i Minami Y, Kuniyasu H, Kambe N. Org. Lett. 2008; 10: 2469
- 2j Wang M, Cheng L, Wu A. Dalton Trans. 2008; 3879
- 2k Toyofuku M, Fujiwara S.-i, Shin-ike T, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2008; 130: 10504
- 2l Minami Y, Kuniyasu H, Miyafuji K, Kambe N. Chem. Commun. 2009; 3080
- 2m Minami Y, Kuniyasu H, Sanagawa A, Kambe N. Org. Lett. 2010; 12: 3744
- 2n Fujiwara K, Kurahashi T, Matsubara S. Org. Lett. 2010; 12: 4548
- 2o Ozaki T, Nomoto A, Kamiya I, Kawakami J.-i, Ogawa A. Bull. Chem. Soc. Jpn. 2011; 84: 155
- 2p Fujiwara K, Kurahashi T, Matsubara S. Chem. Lett. 2011; 40: 322
- 2q Arisawa M, Igarashi Y, Tagami Y, Yamaguchi M, Kabuto C. Tetrahedron Lett. 2011; 52: 920
- 2r Ochi Y, Kurahashi T, Matsubara S. Org. Lett. 2011; 13: 1374
- 2s Inami T, Baba Y, Kurahashi T, Matsubara S. Org. Lett. 2011; 13: 1912
- 2t Iwasaki M, Fujino D, Wada T, Kondoh A, Yorimitsu H, Oshima K. Chem. Asian J. 2011; 6: 3190
- 2u Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
- 2v Nishi M, Kuninobu Y, Takai K. Org. Lett. 2012; 14: 6116
- 2w Arambasic M, Hooper JF, Willis MC. Org. Lett. 2013; 15: 5162
- 2x Inami T, Kurahashi T, Matsubara S. Org. Lett. 2014; 16: 5660
- 2y Nakamaura I, Sato T, Yamamoto Y. Angew. Chem. Int. Ed. 2006; 45: 4473
- 2z Shibata T, Sekine A, Akino M, Ito M. Chem. Commun. 2021; 57: 9048
- 3a Sánchez-Delgado RA. Organometallic Modeling of the Hydrodesulphurization and Hydrodenitrogenation Reactions. Springer; Dordrecht: 2002
- 3b Jones WD, Dong L. J. Am. Chem. Soc. 1991; 113: 559
- 3c Morikita T, Hirano M, Sasaki A, Komiya S. Inorg. Chim. Acta 1991; 291: 341
- 3d Jones WD, Chin RM. Organometallics 1992; 11: 2698
- 3e Vicic DA, Jones WD. J. Am. Chem. Soc. 1997; 119: 10855
- 3f Churchill DG, Bridgewater BM, Parkin G. J. Am. Chem. Soc. 2000; 122: 178
- 3g Chantson J, Görls H, Lotz S. J. Organomet. Chem. 2003; 687: 39
- 3h Ateşin TA, Ateşin AC, Skugrud K, Jones WD. Inorg. Chem. 2008; 47: 4596
- 3i Grochowski MR, Li T, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2010; 132: 12412
- 3j Grieb AL, Merola JS. J. Organomet. Chem. 2012; 713: 163
- 4 Inami T, Takahashi T, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2019; 141: 12541
- 5a Wilhelm M, Schmidt P. Helv. Chim. Acta 1970; 53: 1697
- 5b Kaupp G, Gründken E, Matthies D. Chem. Ber. 1986; 119: 3109
- 5c Hofmann H, Fischer H, Bremer M. Chem. Ber. 1987; 120: 2087
- 5d Cabarrocas G, Rafel S, Ventura M, Villalgordo JM. Synlett 2000; 595
- 5e Cabarrocas G, Ventura M, Maestro M, Mahía J, Villalgordo JM. Tetrahedron: Asymmetry 2001; 12: 1851
- 5f Chanteau F, Didier B, Dondy B, Doussot P, Plantier-Royon R, Portella C. Eur. J. Org. Chem. 2004; 1444
- 5g Hayakawa S, Matsuo K, Yamada H, Fukui N, Shinokubo H. J. Am. Chem. Soc. 2020; 142: 11663
- 6 Kassaee MZ, Musavi SM, Momeni MR, Shakib FA, Ghambarian M. J. Mol. Struct.: THEOCHEM 2008; 861: 117
- 7 CCDC 1037880 contains the supplementary crystallographic data for compound 5a(dimer). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 8 3,4-Diisopropyl-2-(trifluoromethyl)quinoline (4aa): Typical Procedure The reaction was performed in a 5 mL sealed tube equipped with a Teflon-coated magnetic stirrer bar. Benzothiazole 1a (0.20 mmol) and alkyne 2a (0.40 mmol; 2.0 equiv) were added to a solution of bis(1,5-cyclooctadiene)nickel (5.5 mg, 0.02 mmol, 10 mol%) and IPr (15.6 mg, 0.04 mmol, 20 mol%) in hexane (0.3 mL) in a dry box. The sealed tube was removed from the dry box, and the mixture was stirred at rt for 12 h then heated at 80 °C for 3 h. The resulting mixture was cooled to rt, filtered through a pad of silica gel, and concentrated in vacuo. The residue was purified by flash column chromatography [silica gel, hexane–EtOAc (20:1)] to give a white solid; yield: 53.1 mg (94%); mp 55–57 °C. IR (KBr): 2965, 2872, 1364, 1302, 1177, 1126, 1065, 768, 740 cm–1. 1H NMR (500 MHx, CDCl3): δ = 8.15 (dd, J = 8.5, 1.0 Hz, 1 H, Ar), 8.02 (dd, J = 8.5, 1.0 Hz, 1 H; Ar), 7.73–7.69 (m, 1 H, Ar), 7.65–7.62 (m, 1 H, Ar), 3.12–3.09 (m, 2 H, CH2 Et), 2.90–2.87 (m, 2 H, CH2 Et), 1.73–1.60 (m, 4 H, 2CH2CH2 CH3), 1.15 (t, J = 7.5 Hz, 3 H, CH3), 1.11 (t, J = 7.5 Hz, 3 H, CH3). 13C NMR (125.7 MHz, CDCl3): δ = 149.3, 146.2 (q, J = 31 Hz), 145.0, 130.9, 130.4, 129.1, 128.2, 123.6, 122.4 (q, J = 275 Hz), 30.5 (d, J = 2.4 Hz), 30.2, 24.9, 24.3, 14.80, 14.78. 19F NMR (188 Hz, CDCl3): δ = –64.1. HRMS (ESI+): m/z [M + H]+ calcd for C16H19F3N: 282.1464; found: 282.1460.
For cleavage of the C–S bonds of thiophene or thiazole derivatives by a stoichiometric amount of transition-metal complexes, see:
For selected examples, see: