Synthesis 2021; 53(15): 2632-2642
DOI: 10.1055/s-0037-1610770
paper

Synthesis of Optically Active N-(4-Hydroxynon-2-enyl)pyrrolidines: Key Building Blocks in the Total Synthesis of Streptomyces coelicolor Butanolide 5 (SCB-5) and Virginiae Butanolide A (VB-A)

Jonas Donges
a   Organische Chemie/Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
,
Sandra Hofmann
b   Konrad-Adenauer-Gymnasium, Wörthstr. 16, 56457 Westerburg, Germany
,
Johannes C. Walter
c   Otto-Schott-Gymnasium, An Schneiders Mühle 1, 55122 Mainz, Germany
,
Julia Reichertz
d   Maria-Ward-Schule, Ballplatz 3, 55116 Mainz, Germany
,
Moritz Brüggemann
e   Shimadzu Deutschland GmbH, Im Leuschnerpark 4, 64347 Griesheim, Germany
,
Andrea Frank
a   Organische Chemie/Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
,
Udo Nubbemeyer
a   Organische Chemie/Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
› Institutsangaben


Abstract

Starting from 5-methylhexanal and (S)-configured N-propargylprolinol ethers, coupling delivered N-(4-hydroxynon-2-ynyl)prolinol derivatives as mixtures of C4 diastereomers. Resolution of the epimers succeeded after introduction of an (R)-mandelic ester derivative and subsequent HPLC separation. Alternatively, suitable oxidation gave the corresponding alkynyl ketone. Midland reagent controlled diastereoselective reduction afforded a defined configured propargyl alcohol with high selectivity. LiAlH4 reduction and Mosher analyses of the allyl alcohols enabled structure elucidation. The suitably protected products are used as key intermediates in enantioselective Streptomyces γ-butyrolactone signaling molecule total syntheses.

Supporting Information



Publikationsverlauf

Eingereicht: 02. März 2021

Angenommen nach Revision: 24. März 2021

Artikel online veröffentlicht:
15. April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Corre C, Son L, O’Rouke S, Chater KF, Challis GL. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 17510
    • 1b Takano E. Curr. Opin. Microbiol. 2006; 9: 287
    • 1c Bibb MJ. Curr. Opin. Microbiol. 2005; 8: 208
    • 2a Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H. Mol. Microbiol. 2014; 94: 490
    • 2b Willey JM, Gaskell AA. Chem. Rev. 2011; 111: 174
    • 2c Kitani S, Doi M, Shimizu T, Maeda A, Nihira T. Arch. Microbiol. 2010; 192: 211
    • 2d Shikura N, Yamamura J, Nihira T. J. Bacteriol. 2002; 184: 5151
    • 2e Kawachi R, Akashi T, Kamitani Y, Sy A, Wangchaisoonthorn U, Nihira T, Yamada Y. Mol. Microbiol. 2000; 36: 302
    • 2f Waki M, Nihira T, Yamada Y. J. Bacteriol. 1997; 179: 5131
    • 2g Horinouchi S, Beppu T. Proc. Jpn. Acad., Ser. B 2007; 83: 277
    • 3a Kleiner EM, Pliner SA, Soifer VS, Onoprienko VV, Balasheva TA, Rozynov BV, Khokhlov AS. Bioorg. Khim. 1976; 2: 1142
    • 3b Anisova NL, Blinova IN, Efremenkova OV, Koz’min LP, Onoprienko VV. Izv. Akad. Nauk SSSR, Ser. Biol. 1984; 98

      VB Factors:
    • 4a Georgousaki K, Tsafantakis N, Gumeni S, Gonzalez I, Mackenzie TA, Reyes F, Lambert C, Trougakos IP, Genilloud O, Fokialakis N. Bioorg. Med. Chem. Lett. 2020; 30: 126952
    • 4b Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y. J. Antibiot. 1989; 42: 1873
    • 4c Yamada Y, Sugamura K, Kondo K, Yanagimoto M, Okada H. J. Antibiot. 1987; 40: 496
    • 4d Gräfe U, Reinhardt G, Schade W, Eritt I, Fleck WF, Radics L. Biotechnol. Lett. 1983; 5: 591

      SCB Factors:
    • 5a Sidda JD, Poon V, Song L, Wang W, Yang K, Corre C. Org. Biomol. Chem. 2016; 14: 6390
    • 5b Sato K, Nihira T, Sakuda S, Yanagimoto M, Yamada Y. J. Ferment. Bioeng. 1989; 68: 170
    • 5c Gräfe U, Schade W, Eritt I, Fleck WF, Radics L. J. Antibiot. 1982; 35: 1722

    • For further SCB-1 derivatives displaying additional hydroxyl groups within the side chain, see:
    • 5d Mu Y, Yu X, Zheng Z, Liu W, Li G, Liu J, Jiang Y, Han L, Huang X. Magn. Reson. Chem. 2019; 57: 1150

      SAR:
    • 6a Hsiao N.-H, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T, Takano E. Chem. Biol. 2009; 16: 951
    • 6b Nihira T, Shimizu Y, Kim HS, Yamada Y. J. Antibiot. 1988; 41: 1828

      Syntheses. A-factor:
    • 7a Morin JB, Adams KL, Sello JK. Org. Biomol. Chem. 2012; 10: 1517
    • 7b Crawforth JM, Fawcett J, Rawlings BJ. J. Chem. Soc., Perkin Trans. 1 1998; 1721
    • 7c Mori K, Yamane K. Tetrahedron 1982; 38: 2919
    • 7d Parsons PJ, Lacrouts P, Buss AD. J. Chem. Soc., Chem. Commun. 1995; 437
    • 7e Posner GH, Weitzberg M, Jew S.-S. Synth. Commun. 1987; 17: 611

    • SCB-1:
    • 7f Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJ. L, Yamada Y, Bibb M. J. Biol. Chem. 2000; 275: 11010

    • SCB-2:
    • 7g Sarkale AM, Kumar A, Appayee C. J. Org. Chem. 2018; 83: 4167

    • IM-2:
    • 7h Mizuno K, Sakuda S, Nihira T, Yamada Y. Tetrahedron 1994; 50: 10849

    • VB-D:
    • 7i Elsner P, Jiang H, Nielsen JB, Pasi F, Jørgensen KA. Chem. Commun. 2008; 5827

    • VB-C:
    • 7j Takabe K, Mase N, Matsumura H, Hasegawa T, Iida Y, Kuribayashi H, Adachi K, Yoda H, Ao M. Bioorg. Med. Chem. Lett. 2002; 12: 2295
  • 8 Mori K, Chiba N. Liebigs Ann. Chem. 1990; 31
  • 9 Sakuda S, Yamada Y. Tetrahedron Lett. 1991; 32: 1817

    • The zwitterionic aza-Claisen rearrangement is described as a two-step process. After addition of a tertiary allylamine to an intermediately formed Lewis acid activated ketene, a zwitterionic N-acylammonium enolate is generated, which then undergoes a Claisen-type rearrangement with charge neutralization and high stereoselectivities. For a review, see:
    • 10a Nubbemeyer U. Synthesis 2003; 961

    • Substrate control:
    • 10b Nubbemeyer U. J. Org. Chem. 1995; 60: 3773
    • 10c Nubbemeyer U. J. Org. Chem. 1996; 61: 3677
    • 10d Heescher C, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2013; 4399

    • Auxiliary control:
    • 10e Laabs S, Münch W, Nubbemeyer U, Bats J.-W. Tetrahedron 2002; 58: 1317
    • 10f Zhang N, Nubbemeyer U. Synthesis 2002; 242
    • 10g Friedemann NM, Härter A, Brandes S, Groß S, Gerlach D, Münch W, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2012; 2346
    • 11a Gosh AK, Gong G. Org. Lett. 2007; 9: 1437
    • 11b Frost JR, Cheong CB, Akhtar WM, Caputo DF, Stevenson NG, Donohoe TJ. J. Am. Chem. Soc. 2015; 137: 15664
    • 12a Kanegusuku AL, Castanheiro T, Ayer SK, Roizen JL. Org. Lett. 2019; 21: 6089
    • 12b Tate DJ, Anemian R, Bushby RJ, Nanan S, Warriner SL, Whitaker BJ. Beilstein J. Org. Chem. 2012; 8: 120
    • 12c Zhang X, Da S, Zhang C, Xie Z, Li Y. Tetrahedron Lett. 2006; 47: 507

      Avoiding use of the expensive starting material 5-methylhexanoic acid (1):
    • 13a List B, Doehring A, Hechavarria Fonseca MT, Job A, Rios Torres R. Tetrahedron 2006; 62: 476
    • 13b Debarge S, McDaid P, O’Neill P, Frahill J, Wong JW, Carr D, Burrell A, Davies S, Karmilowicz M, Steflik J. Org. Process Res. Dev. 2014; 18: 109
    • 13c Rigoli JW, Moyer SA, Pearce SD, Schomaker JM. Org. Biomol. Chem. 2012; 10: 1746
    • 13d Graham SM, Prestwich GD. J. Org. Chem. 1994; 59: 2956
    • 14a Widianti T, Hiraga Y, Kojima S, Abe M. Tetrahedron: Asymmetry 2010; 21: 1881
    • 14b Xu D, Luo S, Yue H, Wang L, Liu Y, Xu Z. Synlett 2006; 2569
    • 14c Liu F, Wang S, Wang N, Peng Y. Synlett 2007; 2415
    • 15a Lochead AW, Proctor GR, Canton ML. J. Chem. Soc., Perkin Trans. 1 1984; 2477
    • 15b Gómez C, Huerta FF, Yus M. Tetrahedron 1998; 54: 6177
    • 15c Alami M, Crousse B, Ferri F. J. Organomet. Chem. 2001; 624: 114
    • 15d Xu H.-D, Wu H, Jiang C, Chen P, Shen M.-H. Tetrahedron Lett. 2016; 57: 2915
    • 15e Organ MG, Cooper JT, Rogers LR, Soleymanzadeh F, Paul T. J. Org. Chem. 2000; 65: 7959
    • 15f Hughes TE, Vath JE. PCT Int. Appl WO 201471368, 2014
    • 16a Waterhouse RN, Collier TL, O’Brien JC. J. Labelled Compd. Radiopharm. 1996; 38: 215
    • 16b Rhoden JB, Bouvet M, Izenwasser S, Wade D, Lomenzo SA, Trudell ML. Bioorg. Med. Chem. 2005; 13: 5623
    • 17a Caubere P. Bull. Soc. Chim. Fr. 1964; 148
    • 17b Guijarro A, Yus M. Tetrahedron 1994; 50: 13269
    • 18a Montgomery J, Chevliakov MV, Brielmann HL. Tetrahedron 1997; 53: 16449
    • 18b Fischer F, Jungk P, Weding N, Spannenberg A, Ott H, Hapke M. Eur. J. Org. Chem. 2012; 5828
    • 18c Mlostoń G, Wróblewska A, Obijalska E, Heimgartner H. Tetrahedron: Asymmetry 2013; 24: 958
    • 19a Osorio-Nieto U, Chamorro-Arenas D, Quintero L, Höpfl H, Sartillo-Priscil F. J. Org. Chem. 2016; 81: 8625
    • 19b Bohland F, Erlin I, Platte L, Schröder M, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2014; 6272
    • 19c Sudau A, Münch W, Bats J.-W, Nubbemeyer U. Eur. J. Org. Chem. 2002; 3304
    • 20a Lizarzaburu ME, Shuttleworth S. Tetrahedron Lett. 2003; 44: 4873
    • 20b Sonawane RP, Mueck-Lichtenfeld C, Froehlich R, Bergander K, Hoppe D. Chem. Eur. J. 2007; 13: 6419
    • 20c Dehmlow EV, Klauck R, Duettmann S, Neumann B, Stammler H.-G. Tetrahedron: Asymmetry 1998; 9: 2235
    • 21a Monnier F, Taillefer M. Angew. Chem. 2009; 121: 7088
    • 21b Toumi M, Rincheval V, Young A, Gergeres D, Turos E, County F, Mignotte B, Evano G. Eur. J. Org. Chem. 2009; 3368
    • 21c Wolter M, Nordmann G, Job GE, Buchwald LS. Org. Lett. 2002; 4: 973
    • 22a Hedenström E, Andersson F, Hjalmarsson M. J. Chem. Soc., Perkin Trans. 1 2000; 1513
    • 22b Lee D, Long SA, Murray JH, Adams JL, Nuttall ME, Nadeau DP, Kikly K, Winkler JD, Sung C.-M, Ryan MD, Levy MA, Keller PM, DeWolf WE. Jr. J. Med. Chem. 2001; 44: 2015
    • 22c Fischer H, Podschadly O, Roth G, Herminghaus S, Klewitz S, Heck J, Houbrechts S, Meyer T. J. Organomet. Chem. 1997; 541: 321
    • 22d Tsuo H.-R, Mamuya N, Johnson BD, Reich MF, Gruber BC, Ye F, Nilakantan R, Shen R, Discafani C, DeBlanc R, Davis R, Koehn FE, Greenberger LM, Wang Y.-F, Wissner A. J. Med. Chem. 2001; 44: 2719
    • 23a Unterhalt B, Middelberg C. Arch. Pharm. 1994; 327: 119
    • 23b Unterhalt B, Middelberg C. Sci. Pharm. 1994; 62: 51

    • Catalytic control:
    • 23c Anand NK, Carreira EM. J. Am. Chem. Soc. 2001; 123: 9687
    • 23d Silhankova A, Hoscovec M, Liboska R, Ferles M. Collect. Czech. Chem. Commun. 1989; 54: 1067
    • 23e Trost BM, Ryan MC, Rao M, Marcovic TZ. J. Am. Chem. Soc. 2014; 136: 17422
    • 23f Pennell MN, Turner PG, Sheppard TD. Chem. Eur. J. 2012; 18: 4748
    • 23g Thiede S, Wosniok PR, Herkommer D, Debnar T, Tian M, Wang T, Schremp M, Menche D. Chem. Eur. J. 2017; 23: 3300
    • 23h Shrekhar V, Reddy DK, Reddy SP, Prabhakar P, Venkatesvarlu Y. Eur. J. Org. Chem. 2011; 4460
  • 24 Toshima K, Ohishi K, Tomishima M, Matsumura S. Heterocycles 1997; 45: 851
    • 25a Müller P, Bon V, Senkovska I, Nguyen KD, Kaskel S. Polyhedron 2019; 159: 382

    • Epimerization:
    • 25b Abad J.-L, Camps F. Tetrahedron 2004; 60: 11519
    • 25c Hartwig W, Schöllkopf U. Liebigs Ann. Chem. 1982; 1952
    • 26a Bartholomäus R, Bachmann J, Mang C, Haustedt LO, Harms K, Koert U. Eur. J. Org. Chem. 2013; 180
    • 26b Candy M, Durand T, Galano J.-M, Oger C. Eur. J. Org. Chem. 2016; 5813
    • 26c McNeill AH, Thomas EJ. Synthesis 1994; 322
    • 26d Langille NF, Panek JS. Org. Lett. 2004; 6: 3202
    • 26e Jung ME, Min S.-J. J. Am. Chem. Soc. 2005; 127: 10834
    • 26f Du Y, Turlington M, Zhou X, Pu L. Tetrahedron Lett. 2010; 51: 5024
    • 27a Nuin E, Gómez-Mendoza M, Andreu I, Marin ML, Miranda MA. Org. Lett. 2013; 15: 298
    • 27b Kutner A, Martynow J, Chodynski M, Szelejewski W, Fitak H, Kupra M. PCT Int. Appl WO 2003087048, 2003
    • 28a Guy A, Oger C, Heppekausen J, Signorini C, Defelice C, Fürstner A, Durand T, Galano J.-M. Chem. Eur. J. 2014; 20: 6374
    • 28b Ogawa S, Morikawa T. Eur. J. Org. Chem. 2000; 1759
    • 28c Steel PG, Mills OS, Parmee ER, Thomas EJ. J. Chem. Soc., Perkin Trans. 1 1997; 391
    • 29a Yoshino T, Ng F, Danishefsky SJ. J. Am. Chem. Soc. 2006; 128: 14185
    • 29b Friest JA, Broussy S, Chung WJ, Berkowitz BB. Angew. Chem. 2011; 123: 9057
    • 29c Bär A, Bär SI, Schobert R. Org. Biomol. Chem. 2020; 18: 7565
    • 29d Ref. 22d; with acid chloride.
    • 29e Jepsen TH, Glibstrup E, Crestey F, Jensen AA, Kristensen JL. Beilstein J. Org. Chem. 2017; 13: 988
    • 29f D’Hooghe M, Van Brabandt W, De Kimpe N. J. Org. Chem. 2004; 69: 2703
    • 31a Yang F, Ji K.-G, Zhao S.-C, Ali S, Ye Y.-Y, Liu X.-Y, Liang Y.-M. Chem. Eur. J. 2012; 18: 6470
    • 31b Hashimoto T, Okabe A, Mizuno T, Izawa M, Takeuchi R. Tetrahedron 2014; 70: 8681
    • 31c Jacobi PA, Craig TA, Walker DB, Arrick BA, Frechette RF. J. Am. Chem. Soc. 1984; 106: 5585
    • 32a Midland MM, Tramontano A, Kazubski A, Graham RS, Tsai DJ. S, Cardin DB. Tetrahedron 1984; 40: 1371
    • 32b Liron F, Knochel P. Chem. Commun. 2004; 304
    • 32c Lunkwitz R, Zab K, Tschierske C. J. Prakt. Chem./Chem.-Ztg. 1998; 340: 662
    • 33a Trost BM, Tometzki GB. Synthesis 1991; 1235
    • 33b Trost BM, Romero DL, Rise F. J. Am. Chem. Soc. 1994; 116: 4268
    • 33c Aponick A, Biannic B. Org. Lett. 2011; 13: 1330
    • 33d Sabitha G, Reddy TR, Srinivas C, Yadav JS. Helv. Chim. Acta 2011; 94: 224
    • 34a Burke SD, Hong J, Lennox JR, Mongin AP. J. Org. Chem. 1998; 63: 6952
    • 34b Marshall JA, Lebreton J. J. Am. Chem. Soc. 1988; 110: 2925
    • 34c Compostella F, Franchini L, Giovenzana GB, Panza L, Prosperi D, Ronchetti F. Tetrahedron: Asymmetry 2002; 13: 867
    • 35a Brodmann T, Janssen D, Sasse F, Irschik H, Jansen R, Müller R, Kalesse M. Eur. J. Org. Chem. 2010; 5155
    • 35b Altendorfer M, Raja A, Sasse F, Irschik H, Menche D. Org. Biomol. Chem. 2013; 11: 2116
    • 35c Paterson I, De Savi C, Tudge M. Org. Lett. 2001; 3: 3149

      The diastereomerically pure alcohols (4R)-20 and (4S)-20 with unknown absolute configuration were converted into the corresponding esters with (R)- and (S)-Mosher acid. The anisotropic shielding effect of the aryl group causes a more intensive upfield shift of adjacent protons upon comparison of the 1H NMR spectra of both esters. Adopting favorable conformations of the carbon backbone (zigzag chain with minimized repulsive interactions), the Newman projections presented in the Supporting Information indicate the proximity of R1 and R2 of the carbinol and the Mosher ester substituents Ph and OMe. For details, see the Supporting Information. Also see:
    • 36a Hoye TR, Jeffrey CS, Sao F. Nat. Protoc. 2007; 2: 2451
    • 36b Dale JA, Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
    • 36c Sullivan GG, Dale JA, Mosher HS. J. Org. Chem. 1973; 38: 2143