Synthesis 2021; 53(13): 2229-2239
DOI: 10.1055/s-0037-1610765
paper

Rh(III)-Catalyzed Olefination and Alkylation of Arenes with Maleimides: A Tunable Strategy for C(sp2)–H Functionalization

Wenjie Zhang
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Xueyan Liu
b   Bengbu Product Quality and Inspection Institute, Bengbu, Anhui 233040, P. R. of China
,
Zhenfeng Tian
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Hongji Li
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (21772061) and the Excellent Young Talents Fund Program of Higher Education Institutionsof Anhui Province (gxyq2020015).


Abstract

We herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.

Supporting Information



Publication History

Received: 20 November 2020

Accepted after revision: 27 January 2021

Article published online:
15 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1b Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 1d Li H, Miao T, Wang M, Li P, Wang L. Synlett 2016; 27: 1635
    • 1e Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 1f Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 1g Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
    • 1h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 1i Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
    • 1j Liao G, Zhou T, Yao Q.-J, Shi BF. Chem. Commun. 2019; 55: 8514
    • 1k Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 1l Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981

      For selected examples, see:
    • 2a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2b Caro-Diaz EJ. E, Urbano M, Buzard DJ, Jones MR. Bioorg. Med. Chem. Lett. 2016; 26: 5378
    • 2c Xing Y.-Y, Liu J.-B, Sun Q.-M, Sun C.-Z, Huang F, Chen D.-Z. J. Org. Chem. 2019; 84: 10690
    • 2d Han F, Xun S, Jia L, Zhang Y, Zou L, Hu X. Org. Lett. 2019; 21: 5907
    • 2e Guo S, Sun L, Liu Y, Ma N, Zhang X, Fan X. Org. Lett. 2019; 21: 4082
    • 2f Wang D, Dong B, Wang Y, Qian J, Zhu J, Zhao Y, Shi Z. Nat. Commun. 2019; 10: 3539
    • 2g Zhang S.-K, Struwe J, Hu L, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 3178
    • 2h Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
    • 2i Chang R, Chen Y, Yang W, Zhang Z, Guo Z, Li Y. J. Org. Chem. 2020; 85: 13191
    • 2j Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. ACS Catal. 2020; 10: 11693
    • 2k Li Y, Zhang P, Liu Y.-J, Yu Z.-X, Shi B.-F. ACS Catal. 2020; 10: 8212
    • 3a Henry MC, Mostafa MA. B, Sutherland A. Synthesis 2017; 49: 4586
    • 3b Ping Y, Chen Z, Ding Q, Peng Y. Synthesis 2017; 49: 2015
    • 3c Weng Z, Fang X, He M, Gu L, Lin J, Li Z, Ma W. Org. Lett. 2019; 21: 6310
    • 3d Xu M, Yuan Y, Wang Y, Tao Q, Wang C, Li Y. Org. Lett. 2019; 21: 6264
    • 3e Tan G, Wu Y, Shi Y, You J. Angew. Chem. Int. Ed. 2019; 58: 7440
    • 3f Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Org. Lett. 2020; 22: 3219
    • 3g Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
    • 4a Konstantinova LS, Knyazeva EA, Obruchnikova NV, Gatilov YV, Zibarev AV, Rakitin OA. Tetrahedron Lett. 2013; 54: 3075
    • 4b Hubrich J, Himmler T, Rodefeld L, Ackermann L. ACS Catal. 2015; 5: 4089
    • 4c Lin C, Chen Z, Liu Z, Zhang Y. Adv. Synth. Catal. 2018; 360: 519
    • 4d Xie H, Shao Y, Gui J, Lan J, Liu Z, Ke Z, Deng Y, Jiang H, Zeng W. Org. Lett. 2019; 21: 3427
    • 4e Rej N, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
    • 4f Kumar GS, Khot NP, Manmohan Kapur M. Adv. Synth. Catal. 2019; 361: 73
    • 4g Li L, Zhang F, Deng G.-J, Gong H. Org. Lett. 2018; 20: 7321
    • 4h Jiang Y, Li P, Zhao J, Liu B, Li X. Org. Lett. 2020; 22: 7475
    • 5a Liu B, Fan Y, Gao Y, Sun C, Xu C, Zhu J. J. Am. Chem. Soc. 2013; 135: 468
    • 5b Yu J, Yang X, Wu C, Su W. J. Org. Chem. 2020; 85: 1009
    • 5c Kannaboina P, Kumar KA, Das P. Org. Lett. 2016; 18: 900
    • 5d Lu M.-Z, Chen X.-R, Xu H, Dai H.-X, Yu J.-Q. Chem. Sci. 2018; 9: 1311
    • 5e Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Org. Lett. 2019; 21: 8219
    • 5f Song H, Li Y, Yao Q.-J, Jin L, Liu L, Liu Y.-H, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 6576
    • 5g Yu Z, Zhang Y, Tang J, Zhang L, Liu Q, Li Q, Gao G, You J. ACS Catal. 2020; 10: 203
    • 6a Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 6b Shibata K, Natsui S, Chatani N. Org. Lett. 2017; 19: 2234
    • 6c Zhou T, Wang Y, Li B, Wang B. Org. Lett. 2016; 18: 5066
    • 6d Zheng J, Breit B. Org. Lett. 2018; 20: 1866
    • 6e Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
    • 6f Xu F, Song Y, Zhu W, Liu C, Lu Y.-Z, Du M. Chem. Commun. 2020; 56: 11227
    • 6g Sun X, Zhao W, Li B.-J. Chem. Commun. 2020; 56: 1298
    • 7a Morita T, Akita M, Satoh T, Kakiuchi F, Miura M. Org. Lett. 2016; 18: 4598
    • 7b Han S, Park J, Kim S, Lee SH, Sharma S, Mishra NK, Jung YH, Kim IS. Org. Lett. 2016; 18: 4666
    • 7c Zhang Z, Han S, Tang M, Ackermann L, Li J. Org. Lett. 2017; 19: 3315
    • 7d Chen X, Ren J, Xie H, Sun W, Sun M, Wu B. Org. Chem. Front. 2018; 5: 184
    • 7e Zhao J, Pi C, You C, Wang Y, Cui X, Wu Y. Eur. J. Org. Chem. 2018; 6919
    • 7f Tian T, Dong A.-S, Chen D, Cao X.-T, Wang G. Org. Biomol. Chem. 2019; 17: 7664
    • 7g Manoharan R, Logeswaran R, Jeganmohan M. J. Org. Chem. 2019; 84: 14830
    • 7h Li B, Guo C, Shen N, Zhang X, Fan X. Org. Chem. Front. 2020; 7: 3698
    • 7i Wan T, Pi C, Wu Y, Cui X. Org. Lett. 2020; 22: 6484
  • 8 He Q, Yamaguchi T, Chatani N. Org. Lett. 2017; 19: 4544
    • 9a Mandal R, Emayavaramban B, Sundararaju B. Org. Lett. 2018; 20: 2835
    • 9b Banjare SK, Nanda T, Ravikumar PC. Org. Lett. 2019; 21: 8138
  • 10 Sherikar MS, Kapanaiah R, Lanke V, Prabhu KR. Chem. Commun. 2018; 54: 11200
    • 11a Zhou Y, Liang H, Sheng Y, Wang S, Gao Y, Zhan L, Zheng Z, Yang M, Liang G, Zhou J, Deng J, Song Z. J. Org. Chem. 2020; 85: 9230
    • 11b Ghosh AK, Samanta S, Ghosh P, Neogi S, Hajra A. Org. Biomol. Chem. 2020; 18: 3093

      For early works on isomerization involving the nitroso group, see:
    • 13a Chen Y, Zhang R, Peng Q, Xu L, Pan X. Chem. Asian J. 2017; 12: 2804
    • 13b Tian M, Yang X, Zhang B, Li X. Org. Chem. Front. 2018; 5: 3406
  • 14 CCDC 2043831 (3a) and CCDC 2043409 (4b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 15 Han S, Mishra N, Jo H, Oh Y, Jeon M, Kim S, Kim W, Lee J, Kim H, Kim I. Adv. Synth. Catal. 2017; 359: 2396
  • 16 He S, Tan G, Lou A, You J. Chem. Commun. 2018; 54: 7794
    • 17a Hartman WW, Roll LJ. Org. Synth. 1933; 13: 82
    • 17b Gebhardt C, Priewisch B, Irran E, Rück-Braun K. Synthesis 2008; 1889