Synthesis 2020; 52(01): 85-97
DOI: 10.1055/s-0037-1610728
paper
© Georg Thieme Verlag Stuttgart · New York

DBU-Catalyzed Inter- and Intramolecular Double Michael Addition of Donor–Acceptor Chromone-Pyrazolone/Benzofuranone Synthons: Access to Spiro-Pyrazolone/Benzofuranone-Hexahydroxanthone Hybrids

Qi Di Wei §
a  Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Yi-Ming Yao §
a  Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Shun-Qin Chang
a  Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Wu-De Yang
b  College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P. R. of China
,
Min-Yi Tian
a  Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
a  Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Ying Zhou
b  College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P. R. of China
› Author Affiliations
This work received financial support from National Nature Science Foundation of China (81760625, 81660576 and 81560563) and Projects of Guizhou Province ([2016]5623, JG[2016]06, [2019]1402, [2017]5609 and [2018]5781).
Further Information

Publication History

Received: 27 June 2019

Accepted after revision: 18 August 2019

Publication Date:
13 September 2019 (online)


§ These two authors contributed equally to this work.

Abstract

A DBU-catalyzed inter- and intramolecular double Michael addition of donor–acceptor chromone-pyrazolone/benzofuranone synthons and 3-methyl-4-nitro-5-alkenylisoxazoles has been established, which constructed structurally diverse spiro-pyrazolone/benzofuranone-hexahydroxanthone hybrids bearing five consecutive stereocenters in good yields (up to 91%) with high diastereoselectivities (up to >20:1 dr). Moreover, this strategy further expanded the synthetic potential of bifunctional donor–acceptor chromones, and demonstrated great potential for applications in medicinal chemistry.

Supporting Information

 
  • References

    • 1a Mishra SS, Singh P. Eur. J. Med. Chem. 2016; 124: 500
    • 1b Viegas-Junior C, Danuello A, Bolzani VD. S, Barreiro EJ, Fraga CA. M. Curr. Med. Chem. 2007; 14: 1829
    • 1c Zeng XP, Zhou J. J. Am. Chem. Soc. 2016; 138: 8730
    • 1d Sun M, Ma C, Zhou SJ, Lou SF, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 5703
    • 1e Zhu Y, Zhou J, Jin S, Dong H, Guo J, Bai X, Wang Q, Bu Z. Chem. Commun. 2017; 53: 11201
    • 1f Ma C, Jiang F, Sheng FT, Jiao Y, Mei GJ, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
    • 1g Cao Z Y, Zhou F, Zhou J Zhou J. Acc. Chem. Res. 2018; 51: 1443
  • 2 Fu RG, Sun Y, Sheng WB, Liao DF. Eur. J. Med. Chem. 2017; 136: 195
  • 3 Klahn P, Brönstrup M. Nat. Prod. Rep. 2017; 34: 832
    • 4a Masters KS, Bräse S. Chem. Rev. 2012; 112: 3717
    • 4b Kharwar RN, Mishra A, Gond S, Stierle KA, Stierle D. Nat. Prod. Rep. 2011; 28: 1208
    • 4c Sato S, Suga Y, Yoshimura T, Nakagawa R, Tsuji T, Umemura K, Andoh T. Bioorg. Med. Chem. Lett. 1999; 9: 2653
    • 4d Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT. J. Nat. Prod. 2011; 74: 395
    • 4e Goel R, Sharma V, Budhiraja A, Ishar MP. S. Bioorg. Med. Chem. Lett. 2012; 22: 4665
    • 4f Zhang F, Li L, Niu S, Si Y, Guo L, Jiang X, Che YA. J. Nat. Prod. 2012; 75: 230
    • 4g Zhao BL, Du DM. Asian J. Org. Chem. 2015; 4: 778
    • 4h Ren Q, Gao Y, Wang J. Chem. Eur. J. 2010; 16: 13594
    • 4i Gao Y, Ren Q, Wu H, Li M, Wang J. Chem. Commun. 2010; 46: 9232
    • 4j Zhao L, Li S, Wang L, Yu S, Raabe G, Enders D. Synthesis 2018; 50: 2523
    • 4k Zhao BL, Du DM. Eur. J. Org. Chem. 2015; 24: 5350
    • 5a Mei GJ, Shi F. Chem. Commun. 2018; 54: 6607
    • 5b Xie X, Huang W, Peng C, Han B. Adv. Synth. Catal. 2018; 360: 194
    • 5c Liu YL, Wang X, Zhao YL, Zhu F, Zeng XP, Chen L, Wang CH, Zhao XL, Zhou J. Angew. Chem. Int. Ed 2013; 52: 13735
    • 5d Fang X, Wang CJ. Org. Biomol. Chem. 2018; 16: 2591
    • 5e Cheng D, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
    • 5f Wang CS, Li TZ, Cheng YC, Zhou J, Mei GJ, Shi F. J. Org. Chem. 2019; 84: 3214
    • 5g Wang CS, Cheng YC, Zhou J, Mei GJ, Wang SL, Shi F. J. Org. Chem. 2018; 83: 13861
    • 5h Mei GJ, Li D, Zhou GX, Shi Q, Cao Z, Shi F. Chem. Commun. 2017; 53: 10030
    • 5i Wang YM, Zhang HH, Li C, Fan T, Shi F. Chem. Commun. 2016; 52: 1804
    • 5j Fan T, Zhang HH, Li C, Shen Y, Shi F. Adv. Synth. Catal. 2016; 358: 2017
    • 5k Cao ZY, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 5l Yin XP, Zeng XP, Liu YL, Liao FM, Yu JS, Zhou F, Zhou J. Angew. Chem. Int. Ed. 2014; 53: 13740
    • 6a Han B, Huang W, Ren W, He G, Wang JH, Peng C. Adv. Synth. Catal. 2015; 357: 561
    • 6b Chauhan P, Mahajan S, Loh CC. J, Raabe G, Enders D. Org. Lett. 2014; 16: 2954
    • 6c Amata E, Bland ND, Campbell RK, Pollastri MP. Tetrahedron Lett. 2015; 56: 2832
    • 7a Hussein AA, Meyer JJ. M, Jimeno ML, Rodríguez B. J. Nat. Prod. 2007; 70: 293
    • 7b Ge HM, Zhu CH, Shi DH, Zhang LD, Xie DQ, Yang J, Ng SW, Tan RX. Chem. Eur. J. 2008; 14: 376
    • 7c Pérez-Fons L, Garzón MT, Micol V. J. Agric. Food Chem. 2010; 58: 161
    • 7d Pertino MW, Theoduloz C, Rodríguez JA, Lazo V. J. Nat. Prod. 2010; 73: 639
    • 7e Nicolaou KC, Wu TR, Kang Q, Chen DY. K. Angew. Chem. Int. Ed. 2009; 48: 3440
    • 7f Nicolaou KC, Kang Q, Wu TR, Lim CS, Chen DY. K. J. Am. Chem. Soc. 2010; 132: 7540
    • 7g Sontag B, Ruth M, Spiteller P, Arnold N, Steglich W, Reichert M, Bringmann G. Eur. J. Org. Chem. 2006; 1023
    • 7h Nakatani N, Inatani R. Agric. Biol. Chem. 1983; 47: 353
    • 8a Lakhvich FA, Koroleva EV, Akhrem AA. Chem. Heterocycl. Compd. 1989; 25: 359
    • 8b Sperry JB, Wright DL. Curr. Opin. Drug Discovery Dev. 2005; 8: 723
    • 8c Sun R, Li Y, Xiong L, Liu Y, Wang Q. J. Agric. Food Chem. 2011; 59: 4851
    • 8d Liu Y, Cui Z, Liu B, Cai B, Li Y, Wang Q. J. Agric. Food Chem. 2010; 58: 2685
    • 8e Liu J, Yu LF, Eaton JB, Caldarone B, Cavino K, Ruiz C, Terry M, Fedolak A, Wang D, Ghavami A, Lowe DA, Brunner D, Lukas RJ, Kozikowski AP. J. Med. Chem. 2011; 54: 7280
    • 8f Mao J, Yuan H, Wang Y, Wan B, Pieroni M, Huang Q, Breemen RB, Kozikowski AP, Franzblau SG. J. Med. Chem. 2009; 52: 6966
    • 8g Gehling VS, Hewitt MC, Vaswani RG, Leblanc Y, Côté A, Nasveschuk GC, Taylor AM, Harmange JC, Audia JE, Pardo E, Joshi S, Sandy P, Mertz JA, Sims RIII, Bergeron JL, Bryant BM, Bellon S, Poy F, Jayaram H, Sankaranarayanan R, Yellapantula S, Srinivasamurthy NB, Birudukota S, Albrecht BK. ACS Med. Chem. Lett. 2013; 4: 835
    • 9a Masters KS, Bräse S. Chem. Rev. 2012; 112: 3717
    • 9b Wang PS, Liu P, Zhai YJ, Lin HC, Han ZY, Gong LZ. J. Am. Chem. Soc. 2015; 137: 12732
    • 9c Nicolaou KC, Li A. Angew. Chem. Int. Ed. 2008; 47: 6579
    • 9d Brohmer MC, Bourcet E, Nieger M, Bräse S. Chem. Eur. J. 2011; 17: 13706
    • 10a Albrecht Ł, Cruz Acosta F, Fraile A, Albrecht A, Christensen J, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 9088
    • 10b Li JL, Zhou SL, Chen PQ, Dong L, Liu TY, Chen YC. Chem. Sci. 2012; 3: 1879
    • 10c Albrecht A, Bojanowski J. Adv. Synth. Catal. 2017; 359: 2907
    • 10d Danda A, Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Org. Lett. 2016; 18: 2632
    • 11a Hardman-Baldwin AM, Visco MD, Wieting JM, Stern C, Kondo S, Mattson AE. Org. Lett. 2016; 18: 3766
    • 11b Iwasaki H, Kume T, Yamamoto Y, Akiba K. Tetrahedron Lett. 1987; 28: 6355
    • 11c Lee YG, Ishimaru K, Iwasaki H, Ohkata K, Akiba K. J. Org. Chem. 1991; 56: 2058
    • 11d Liu J, Li Z, Tong P, Xie Z, Zhang Y, Li Y. J. Org. Chem. 2015; 80: 1632
    • 11e Qin T, Johnson RP, Porco JA. Jr. J. Am. Chem. Soc. 2011; 133: 1714
    • 12a Chen J, Chen JM, Lang F, Zhang XY, Cun LF, Zhu J, Deng JG, Liao J. J. Am. Chem. Soc. 2010; 132: 4552
    • 12b Brown MK, Degrado SJ, Hoveyda AH. Angew. Chem. Int. Ed. 2005; 44: 5306
    • 12c Korenaga T, Hayashi K, Akaki Y, Maenishi R, Sakai T. Org. Lett. 2011; 13: 2022
    • 12d Xiong D, Zhou W, Lu Z, Zeng S, Wang J. Chem. Commun. 2017; 53: 6844
    • 12e Meng L, Jin MY, Wang J. Org. Lett. 2016; 18: 4986
    • 12f Holder JC, Marziale A, Michele Gatti N, Mao B, Stoltz BM. Chem. Eur. J. 2013; 19: 74
    • 12g Vila C, Hornillos V, Fañanás-Mastral M, Feringa BL. Chem. Commun. 2013; 49: 5933
    • 13a O’Connor CJ, Beckmann HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444
    • 13b Burke MD, Schreiber SL. Angew. Chem. Int. Ed. 2004; 43: 46
    • 13c Ma C, Zhou JY, Zhang YZ, Jiao Y, Mei GJ, Shi F. Chem. Asian J. 2018; 13: 2549
    • 13d Xu PW, Liu JK, Shen L, Cao ZY, Zhao XL, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 14a Liu XL, Zhou G, Gong Y, Yao Z, Zuo X, Zhang WH, Zhou Y. Org. Lett. 2019; 21: 2528
    • 14b Liu XL, Gong Y, Chen S, Zuo X, Yao Z, Zhou Y. Org. Chem. Front. 2019; 6: 1603
    • 14c Liu XL, Zuo X, Wang JX, Chang SQ, Wei QD, Zhou Y. Org. Chem. Front. 2019; 6: 1485
    • 14d Zuo X, Liu XL, Wang JX, Yao YM, Zhou YY, Wei QD, Gong Y, Zhou Y. J. Org. Chem. 2019;  84: 6679
    • 14e Liu XL, Wei QD, Zuo X, Xu SW, Yao Z, Wang JX, Zhou Y. Adv. Synth. Catal. 2019; 361: 2836
  • 15 CCDC 1936740 (3r) and 1936741 (5q) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.