Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(13): 1580-1584
DOI: 10.1055/s-0037-1610718
DOI: 10.1055/s-0037-1610718
letter
Direct Synthesis of 1-Arylprop-1-ynes with Calcium Carbide as an Acetylene Source
The authors thank the National Natural Science Foundation of China (21462038) for the financial support of this work.
Further Information
Publication History
Received: 08 April 2019
Accepted after revision: 27 May 2019
Publication Date:
19 June 2019 (online)

Abstract
A simple method is described for the synthesis of 1-arylprop-1-ynes directly from aromatic aldehyde p-tosylhydrazones by using calcium carbide as an acetylene source. The salient features of this protocol are its use of a readily available and easily handled source of acetylene, its operational simplicity, its high yield, and its broad substrate scope.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610718.
- Supporting Information
-
References and Notes
- 1a Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
- 1b Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
- 1c Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
- 1d Fang G, Bi X. Chem. Soc. Rev. 2015; 44: 8124
- 1e Trost BM, Masters JT. Chem. Soc. Rev. 2016; 45: 2212
- 1f Li C.-J. Acc. Chem. Res. 2010; 43: 581
- 2a Klappenberger F, Zhang Y.-Q, Björk J, Klyatskaya S, Ruben M, Barth JV. Acc. Chem. Res. 2015; 48: 2140
- 2b Zheng C, Deng H, Zhao Z, Qin A, Hu R, Tang BZ. Macromolecules 2015; 48: 1941
- 2c He B, Wu Y, Qin A, Tang BZ. Macromolecules 2017; 50: 5719
- 3a Sakata N, Sasakura K, Matsushita G, Okamoto K, Ohe K. Org. Lett. 2017; 19: 3422
- 3b Tejeda-Serrano M, Cabrero-Antonino JR, Mainar-Ruiz V, López-Haro M, Hernández-Garrido JC, Calvino JJ, Leyva-Pérez A, Corma A. ACS Catal. 2017; 7: 3721
- 3c Fu M.-C, Shang R, Cheng W.-M, Fu Y. ACS Catal. 2016; 6: 2501
- 3d Ukigai H, Hara S. Tetrahedron Lett. 2016; 57: 1379
- 3e Jiang Q, Wang J.-Y, Guo C.-C. Synthesis 2015; 47: 2081
- 3f Murai M, Hatano R, Kitabata S, Ohe K. Chem. Commun. 2011; 47: 2375
- 3g Kuniyasu H, Yoshizawa T, Kambe N. Tetrahedron Lett. 2010; 51: 6818
- 3h Barrios-Francisco R, García J. Appl. Catal., A 2010; 385: 108
- 3i Yoon MY, Kim JH, Choi DS, Shin US, Lee JY, Song CE. Adv. Synth. Catal. 2007; 349: 1725
- 3j Song CE, Jung D.-U, Choung SY, Roh EJ, Lee S.-g. Angew. Chem. Int. Ed. 2004; 43: 6183
- 3k Bellina F, Colzi F, Mannina L, Rossi R, Viel S. J. Org. Chem. 2003; 68: 10175
- 4a Yagyu T, Takemoto Y, Yoshimura A, Zhdankin VV, Saito A. Org. Lett. 2017; 19: 2506
- 4b Zhu F, Li Y, Wang Z, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 14151
- 4c Hu L, Mück-Lichtenfeld C, Wang T, He G, Gao M, Zhao J. Chem. Eur. J. 2016; 22: 911
- 4d Saito A, Taniguchi A, Kambara Y, Hanzawa Y. Org. Lett. 2013; 15: 2672
- 4e Zeng W, Wu W, Jiang H, Huang L, Sun Y, Chen Z, Li X. Chem. Commun. 2013; 49: 6611
- 4f Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
- 4g Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 4h Pourzal A.-A. Synthesis 1983; 717
- 5a Fang X, Zeng Y, Li Q, Wu Z, Yao H, Lin A. Org. Lett. 2018; 20: 2530
- 5b Lu C.-J, Chen D.-K, Chen H, Wang H, Jin H, Huang X, Gao J. Org. Biomol. Chem. 2017; 15: 5756
- 5c Berthold D, Breit B. Org. Lett. 2018; 20: 598
- 5d Gao S, Wu Z, Fang X, Lin A, Yao H. Org. Lett. 2016; 18: 3906
- 6a Mi C, Li L, Meng X.-G, Yang R.-Q, Liao X.-H. Tetrahedron 2016; 72: 6705
- 6b Xue J.-W, Zeng M, Hou X, Chen Z, Yin G. Asian J. Org. Chem. 2018; 7: 212
- 6c Shaik JB, Ramkumar V, Sankararaman S. J. Organomet. Chem. 2018; 860: 1
- 7a Eichman CC, Bragdon JP, Stambuli JP. Synlett 2011; 1109
- 7b Yang J.-S, Huang H.-H, Lin S.-H. J. Org. Chem. 2009; 74: 3974
- 8a Liu S, Liu H, Zhou H, Liu Q, Lv J. Org. Lett. 2018; 20: 1110
- 8b Ramachandran PV, Drolet MP. Tetrahedron Lett. 2018; 59: 967
- 9a Pelter A, Drake RA. Tetrahedron Lett. 1988; 29: 4181
- 9b Engler TA, Combrink KD, Ray JE. Synth. Commun. 1989; 19: 1735
- 9c Hurd CD, Tockman A. J. Org. Chem. 1958; 23: 1087
- 9d Katritzky AR, Wang J, Karodia N, Li J. J. Org. Chem. 1997; 62: 4142
- 10a Zhang M.-M, Gong J, Song R.-J, Li J.-H. Eur. J. Org. Chem. 2014; 6769
- 10b Hosoya T, Wakao M, Kondo Y, Doi H, Suzuki M. Org. Biomol. Chem. 2004; 2: 24
- 10c Ruano JL. G, Alemán J, Marzo L, Alvarado C, Tortosa M, Díaz-Tendero S, Fraile A. Chem. Eur. J. 2012; 18: 8414
- 10d An D.-L, Zhang Z, Orita A, Mineyama H, Otera J. Synlett 2007; 1909
- 11 Liu Y.-Y, Yang X.-H, Huang X.-C, Wei W.-T, Song R.-J, Heng J.-H. J. Org. Chem. 2013; 78: 10421
- 12a Miwa K, Aoyama T, Shioiri T. Synlett 1994; 107
- 12b Gilbert JC, Weerasooriya U. J. Org. Chem. 1982; 47: 1837
- 13a Umeda R, Yuasa T, Nishiyama Y. J. Organomet. Chem. 2011; 696: 1916
- 13b Yang X, Languet K, Thamattoor DM. J. Org. Chem. 2016; 81: 8194
- 14a Li X, Liu X, Chen H, Wu W, Qi C, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 14485
- 14b Mao S, Gao Y.-R, Zhu X.-Q, Guo D.-D, Wang Y.-Q. Org. Lett. 2015; 17: 1692
- 14c Ye F, Wang C, Ma X, Hossain ML, Xia Y, Zhang Y, Wang J. J. Org. Chem. 2015; 80: 647
- 15 Munteanu C, Frantz DE. Org. Lett. 2016; 18: 3937
- 16 Dermenci A, Whittaker RE, Gao Y, Cruz FA, Yu Z.-X, Dong G. Chem. Sci. 2015; 6: 3201
- 17a Zhang W, Wu H, Liu Z, Zhong P, Zhang L, Huang X, Cheng J. Chem. Commun. 2006; 4826
- 17b Jiang Y, Kuang C, Yang Q. Synlett 2009; 3163
- 17c Chuentragool P, Vongnam K, Rashatasakhon P, Sukwattanasinitt M, Wacharasindhu S. Tetrahedron 2011; 67: 8177
- 17d Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
- 17e Lin Z, Yu D, Sum YN, Zhang Y. ChemSusChem 2012; 5: 625
- 17f Yu D, Sum YN, Ean AC. C, Chin MP, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 5125
- 17g Sum YN, Yu D, Zhang Y. Green Chem. 2013; 15: 2718
- 17h Thavornsin N, Sukwattanasinitt M, Wacharasindhu S. Polym. Chem. 2014; 5: 48
- 17i Hosseini A, Seidel D, Miska A, Schreiner PR. Org. Lett. 2015; 17: 2808
- 17j Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Green Chem. 2015; 17: 460
- 17k Rodygin KS, Ananikov VP. Green Chem. 2016; 18: 482
- 17l Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
- 17m Teong SP, Yu D, Sum YN, Zhang Y. Green Chem. 2016; 18: 3499
- 17n Rattanangkool E, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Eur. J. Org. Chem. 2016; 4347
- 17o Samzadeh-Kermani A. Synlett 2017; 28: 2126
- 17p Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze AS, Schreiner PR. Org. Biomol. Chem. 2017; 15: 6800
- 17q Werner G, Rodygin KS, Kostin AA, Gordeev EG, Kashin AS, Ananikov VP. Green Chem. 2017; 19: 3032
- 17r Rodygin KS, Gyrdymova YV, Zarubaev VV. Mendeleev Commun. 2017; 27: 476
- 17s Turberg M, Ardila-Fierro KJ, Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2018; 57: 10718
- 17t Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
- 17u Van Beek WE, Gadde K, Tehrani KA. Chem. Eur. J. 2018; 24: 16645
- 17v Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
- 18 Song G, Li Z. Eur. J. Org. Chem. 2018; 1326
- 19 Fu R, Li Z. Eur. J. Org. Chem. 2017; 6648
- 20 Fu R, Li Z. Org. Lett. 2018; 20: 2342
- 21 Fu R, Li Z. J. Chem. Res. 2017; 41: 341
- 22 Li Z, He L, Fu R, Song G, Song W, Xie D, Yang J. Tetrahedron 2016; 72: 4321
- 23 1-Arylprop-1-ynes (2a–x); General Procedure A mixture of the appropriate aromatic aldehyde p-tosylhydrazone (1 mmol), calcium carbide (3 mmol, 0.20 g for 98% purity), t BuOK (2 mmol, 0.22 g), CuI (1.2 mmol, 0.23 g), and H2O (4 mmol, 0.07 mL) in DMF (4 mL) was stirred at 90 °C for 6 h. When the reaction was complete, the mixture was filtered to remove solids and the liquor was extracted with EtOAc (3 × 10 mL) then washed with sat. brine (3 × 10 mL). The resulting organic phase was dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, PE). 1-Phenylprop-1-yne (2a) Colorless liquid; yield: 83.6 mg (72%). 1H NMR (600 MHz, CDCl3): δ = 7.39 (dd, J = 7.7, 2.0 Hz, 2 H), 7.30–7.24 (m, 3 H), 2.05 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 131.46, 128.17, 127.48, 124.01, 85.76, 79.71, 4.29. HRMS: m/z [M + H]+ calcd for C9H9: 117.0699; found: 117.0698. (2-Prop-1-yn-1-ylphenyl)amine (2h) Brown liquid; yield: 87.1 mg (66%). 1H NMR (600 MHz, CDCl3): δ = 7.24 (d, J = 7.8 Hz, 1 H), 7.10–7.06 (m, 1 H), 6.75 (d, J = 8.1 Hz, 1 H), 6.70 (t, J = 7.5 Hz, 1 H), 2.11 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 146.97, 132.01, 128.77, 118.29, 114.52, 109.40, 91.18, 76.06, 4.53. HRMS: m/z [M + H]+ calcd for C9H10N: 132.0808; found: 132.0808.
- 24 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4735
- 25a Hossain ML, Ye F, Zhang Y, Wang J. J. Org. Chem. 2013; 78: 1236
- 25b Suárez A, Fu GC. Angew. Chem. Int. Ed. 2004; 43: 3580
- 25c Hassink M, Liu X, Fox JM. Org. Lett. 2011; 13: 2388
- 26 Xiao Q, Xia Y, Li H, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114