Synthesis 2019; 51(10): 2221-2229
DOI: 10.1055/s-0037-1610697
paper
© Georg Thieme Verlag Stuttgart · New York

Further Structural Modification of Sulfur-Stabilized Silicon Cations with Binaphthyl Backbones

,
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Email: martin.oestreich@tu-berlin.de
› Author Affiliations
This research was supported by the Deutsche Forschungsgemeinschaft (Grant No. Oe 249/12-1).
Further Information

Publication History

Received: 24 January 2019

Accepted: 29 January 2019

Publication Date:
11 March 2019 (online)


Abstract

The synthesis and spectroscopic characterization of two novel cationic silicon–sulfur Lewis pairs with a chiral 4,4′-disubstituted binaphthyl silepine backbone are described. Both Lewis acids induce significant enantioselectivity in the model Diels–Alder reaction of cyclohexa-1,3-diene and chalcone but additional substitution of the binaphthyl backbone exerts a minimal effect on enantioinduction compared to previously reported Lewis acids. Another silicon cation with a chiral spirocyclic backbone induces enantioselectivity in the same range but its synthesis is laborious.

Supporting Information

 
  • References


    • Cyclohexa-1,3-diene Diels–Alder reactions catalyzed by stabilized silicon cations:
    • 1a Hara K, Akiyama R, Sawamura M. Org. Lett. 2005; 7: 5621
    • 1b Klare HF. T, Bergander K, Oestreich M. Angew. Chem. Int. Ed. 2009; 48: 9077
    • 1c Schmidt RK, Müther K, Mück-Lichtenfeld C, Grimme S, Oestreich M. J. Am. Chem. Soc. 2012; 134: 4421
    • 1d Nödling AR, Müther K, Rohde VH. G, Hilt G, Oestreich M. Organometallics 2014; 33: 302
  • 2 Johannsen M, Jørgensen KA, Helmchen G. J. Am. Chem. Soc. 1998; 120: 7637

    • For other enantioselective Diels–Alder reactions catalyzed by chiral silicon Lewis acids, see, for example:
    • 3a Kubota K, Hamblett CL, Wang X, Leighton JL. Tetrahedron 2006; 62: 11397
    • 3b Sakaguchi Y, Iwade Y, Sekikawa T, Minami T, Hatanaka Y. Chem. Commun. 2013; 49: 11173
    • 3c Gatzenmeier T, van Gemmeren M, Xie Y, Höfler D, Leutzsch M, List B. Science 2016; 351: 949
    • 3d Gatzenmeier T, Turberg M, Yepes D, Xie Y, Neese F, Bistoni G, List B. J. Am. Chem. Soc. 2018; 140: 1267

      Enantioselective cyclohexa-1,3-diene Diels–Alder reactions catalyzed by sulfur-stabilized silicon cations:
    • 4a Rohde VH. G, Müller MF, Oestreich M. Organometallics 2015; 34: 3358
    • 4b Shaykhutdinova P, Oestreich M. Organometallics 2016; 35: 2768
    • 4c Shaykhutdinova P, Kemper S, Oestreich M. Eur. J. Org. Chem. 2018; 2896
    • 4d Shaykhutdinova P, Oestreich M. Org. Lett. 2018; 20: 7029
  • 5 Schmidt RK, Klare HF. T, Fröhlich R, Oestreich M. Chem. Eur. J. 2016; 22: 5376
    • 6a Prakash GK. S, Bae S, Wang Q, Rasul G, Olah GA. J. Org. Chem. 2000; 65: 7646
    • 6b Berlekamp U.-H, Jutzi P, Mix A, Neumann B, Stammler H.-G, Schoeller WW. Angew. Chem. Int. Ed. 1999; 38: 2048
  • 7 Wieting JM, Fisher TJ, Schafer AG, Visco MD, Gallucci JC, Mattson AE. Eur. J. Org. Chem. 2015; 525
  • 8 Usanov DL, Yamamoto H. Angew. Chem. Int. Ed. 2010; 49: 8169
  • 9 Isolated yield after several purification processes (see experimental section).
  • 10 Corey JY. J. Am. Chem. Soc. 1975; 97: 3237

    • For chiral ligands containing a 1,1′-spirobiindane backbone for asymmetric catalysis, see:
    • 11a Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
    • 11b Ding K, Han Z, Wang Z. Chem. Asian J. 2009; 4: 32
    • 11c Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 11d Xie J.-H, Zhou Q.-L. Huaxue Xuebao 2014; 72: 778
    • 11e Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 11f Fu Y, Xie J.-H, Hu A.-G, Zhou H, Wang L.-X, Zhou Q.-L. Chem. Commun. 2002; 480
    • 11g Chung YK, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 2225
    • 11h Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
    • 11i Xu F, Huang D, Han C, Shen W, Lin X, Wang Y. J. Org. Chem. 2010; 75: 8677
    • 11j Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2017; 50: 988
    • 12a Wang C, Erker G, Kehr G, Wedeking K, Fröhlich R. Organometallics 2005; 24: 4760
    • 12b Lambert JB, Lin L, Keinan S. Org. Biomol. Chem. 2003; 1: 2559
    • 13a For the synthesis of rac-7,7′-diiodo-2,2′,3,3′-tetrahydro-1,1′-spirobi[indene] from rac-2,2′,3,3′-tetrahydro-1,1′-spirobi [indene]-7,7′-diyl bis(trifluoromethanesulfonate), see: Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 13b For the synthesis of rac-2,2′,3,3′-tetrahydro-1,1′-spirobi[indene]-7,7′-diyl bis(trifluoromethanesulfonate), see: Zhu Z, Zhang Y, Wang K, Fu X, Chen F, Jing H. Catal. Commun. 2016; 81: 50
  • 14 Suffert J. J. Org. Chem. 1989; 54: 509
  • 15 Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P. Pure Appl. Chem. 2001; 73: 1795