Synthesis 2019; 51(08): 1795-1802
DOI: 10.1055/s-0037-1610682
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Addition of Quinoline Derivatives to Carbonyl Compounds via Palladium-Catalyzed Umpolung with Diethylzinc

Yohei Matsumoto
,
,
Masami Kuriyama
,
Koyo Nishida
,
Osamu Onomura*
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: onomura@nagasaki-u.ac.jp
› Author Affiliations
This research was supported by a Grant-in-Aid for Scientific Research (C) (No. 16K08167 and 15K07862) and a Grant-in-Aid for Research Activity Start-up (No. 17H06961) from JSPS.
Further Information

Publication History

Received: 03 November 2018

Accepted after revision: 21 November 2018

Publication Date:
24 January 2019 (online)


Abstract

An efficient method for the C-4-selective addition of quinoline derivatives to carbonyl compounds is described. The combination of 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinolines (EEDQs) with a palladium catalyst and diethylzinc generates nucleophilic allyl species which undergo addition to various aldehydes and ketones. C-4-Substituted quinoline derivatives are obtained in high to excellent yields with moderate diastereoselectivities.

Supporting Information

 
  • References

    • 1a Eswaran S, Adhikari AV, Chowdhury IH, Pal NK, Thomas KD. Eur. J. Med. Chem. 2010; 45: 3374
    • 1b Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
    • 1c Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
    • 1d Mukherjee S, Pal M. Drug Discovery Today 2013; 18: 389
  • 2 Skraup ZH. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
  • 3 Doebner O, von Miller W. Ber. Dtsch. Chem. Ges. 1881; 14: 2812
  • 4 Friedländer P, Henriques S. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
  • 5 Combes A. Bull. Soc. Chim. Fr. 1888; 49: 89
  • 6 Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031

    • Review of nucleophilic addition to N-activated pyridines:
    • 7a Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642

    • Recent examples:
    • 7b Takamura M, Funabashi K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 6327
    • 7c Cointeaux L, Alexakis A. Tetrahedron: Asymmetry 2005; 16: 925
    • 7d Yamaoka Y, Miyabe H, Takemoto Y. J. Am. Chem. Soc. 2007; 129: 6686
    • 7e Black DA, Beveridge RE, Arndtsen BA. J. Org. Chem. 2008; 73: 1906
    • 7f Pappoppula M, Cardoso FS. P, Garrett BO, Aponick A. Angew. Chem. Int. Ed. 2015; 54: 15202
    • 7g Wang Y, Liu Y, Zhang D, Wei H, Shi M, Wang F. Angew. Chem. Int. Ed. 2016; 55: 3776
    • 7h Liu Z, Chen L, Li J, Zhao J, Xu M, Feng L, Wan R.-Z, Li W, Liu L. Org. Biomol. Chem. 2017; 15: 7600

      Review of catalytic reactions with N,O-aminals:
    • 8a Huang Y.-Y, Cai C, Yang X, Lv Z.-C, Schneider U. ACS Catal. 2016; 6: 5747

    • For representative examples, see:
    • 8b Lee JH, Kweon JS, Yoon CM. Tetrahedron Lett. 2002; 43: 5771
    • 8c Kodama T, Moquist PN, Schaus SE. Org. Lett. 2011; 13: 6316
    • 8d Batey RA, MacKay DB, Santhakumar V. J. Am. Chem. Soc. 1999; 121: 5075
    • 8e Chang YM, Park YS, Lee SH, Yoon CM. Tetrahedron Lett. 2004; 45: 9049
    • 8f Sun S, Mao Y, Lou H, Liu L. Chem. Commun. 2015; 51: 10691
    • 8g Berti F, Malossi F, Marchetti F, Pineschi M. Chem. Commun. 2015; 51: 13694
    • 8h Volla CM. R, Fava E, Atodiresei I, Rueping M. Chem. Commun. 2015; 51: 15788
    • 9a Graham TJ. A, Shields JD, Doyle AG. Chem. Sci. 2011; 2: 980
    • 9b Sylvester KT, Wu K, Doyle AG. J. Am. Chem. Soc. 2012; 134: 16967
    • 9c Graham TJ. A, Doyle AG. Org. Lett. 2012; 14: 1616

      For representative examples, see:
    • 11a Araki S, Kamei T, Hirashita T, Yamamura H, Kawai M. Org. Lett. 2000; 2: 847
    • 11b Masuyama Y, Takahara JP, Kurusu Y. J. Am. Chem. Soc. 1988; 110: 4473
    • 11c Tabuchi T, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1986; 27: 601
    • 11d Araki S, Hatano M, Ito H, Butsugan Y. J. Organomet. Chem. 1987; 333: 329
    • 11e Masuyama Y, Kinugawa N, Kurusu Y. J. Org. Chem. 1987; 52: 3702
    • 11f Yasui K, Goto Y, Yajima T, Taniseki Y, Fugami K, Tanaka A, Tamaru Y. Tetrahedron Lett. 1993; 34: 7619
    • 11g Tamaru Y, Tanaka A, Yasui K, Goto S, Tanaka S. Angew. Chem., Int. Ed. Engl. 1995; 34: 787
    • 11h Kimura M, Tamaki T, Nakata M, Tohyama K, Tamaru Y. Angew. Chem. Int. Ed. 2008; 47: 5803

      For reviews, see:
    • 12a Tamaru Y. Eur. J. Org. Chem. 2005; 2647
    • 12b Zanoni G, Pontiroli A, Marchetti A, Vidari G. Eur. J. Org. Chem. 2007; 3599
    • 12c Spielmann K, Niel G, de Figueiredo RM, Campagne J.-M. Chem. Soc. Rev. 2018; 47: 1159
  • 13 Onomura O, Fujimura N, Oda T, Matsumura Y, Demizu Y. Heterocycles 2008; 76: 177
  • 14 The regioselectivity was calculated based on the integral ratio of the double bond signals (around 5.4 ppm) in the 1H NMR spectrum of the crude reaction mixture. For the 1H NMR analysis of C-2 and C-4 selectivity, see ref. 8g.
  • 15 Compounds 3i/4i3q/4q were obtained as inseparable mixtures after silica gel column chromatography.
    • 16a Howell GP, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2006; 4: 1278
    • 16b Tamaru Y. J. Organomet. Chem. 1999; 576: 215
  • 17 The oxidative addition of EEDQ to a nickel catalyst with the assistance of a boronic acid as a Lewis acid was proposed in the Ni-catalyzed Suzuki–Miyaura coupling reaction; see ref. 9b.
  • 18 Moquist PN, Kodama T, Schaus SE. Angew. Chem. Int. Ed. 2010; 49: 7096