Synthesis 2019; 51(06): 1342-1352
DOI: 10.1055/s-0037-1610669
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Coupling Reactions on Functionalized 2-Trifluoromethyl-4-chromenone Scaffolds: Synthesis of Highly Functionalized Trifluoromethyl Heterocycles

a  Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA   Email: javier.izquierdo-ferrer@northwestern.edu
,
Atul D. Jain
a  Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA   Email: javier.izquierdo-ferrer@northwestern.edu
,
Sarki A. Abdulkadir
b  Department of Urology, Northwestern University, Chicago, IL 60611, USA
c  Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
,
Gary E. Schiltz
a  Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA   Email: javier.izquierdo-ferrer@northwestern.edu
c  Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
d  Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
› Author Affiliations
This work was performed in the Northwestern University Medicinal and Synthetic Chemistry Core (ChemCore) at the Center for Molecular Innovation and Drug Discovery (CMIDD), which received funding from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust. Financial support from Cancer Center Support Grant P30 CA060553 from the National Cancer Institute awarded to the Robert H. Lurie Comprehensive Cancer Center is also gratefully acknowledged. Funding from the National Cancer Institute of the National Institutes of Health under Award Number R01CA189074 is also acknowledged.
Further Information

Publication History

Received: 17 September 2018

Accepted after revision: 11 October 2018

Publication Date:
20 November 2018 (eFirst)

Abstract

The chromenone core is an ubiquitous group in biologically active natural products and has been extensively used in organic synthesis. Fluorine-derived compounds, including those with a trifluoromethyl group (CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogues. 2-Trifluoromethylchromenones can be readily functionalized at the 8- and 7-positions, providing chromenones cores of high structural complexity, which are excellent precursors for numerous trifluoromethyl heterocycles.

Supporting Information

 
  • References

    • 1a Jeschke P. ChemBioChem 2004; 5: 570
    • 1b Kirk KL. Curr. Top. Med. Chem. 2006; 6: 1447
    • 1c Isanbor C, Hagan DO. J. Fluorine Chem. 2006; 127: 303
    • 1d Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1e O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1f Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1g Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1h Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 1i Ojima I. J. Org. Chem. 2013; 78: 6358
    • 1j Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432

    • For relevant books in the matter:
    • 1k Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Oxford: 2009
    • 1l Bégué JP, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; New York: 2008
    • 2a Zanda M. ChemMedChem 2009; 4: 49
    • 2b Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 2c Nie J, Guo HC, Cahard D, Ma JA. Chem. Rev. 2011; 111: 455
    • 2d Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 3a Fujita T, Iwasa J, Hansch C. J. Am. Chem. Soc. 1964; 86: 5175
    • 3b Leo A, Hansch C, Elkins D. Chem. Rev. 1971; 71: 525
    • 3c Katritzky AR, Lobanov VS, Karelson M. Chem. Soc. Rev. 1995; 24: 279
    • 3d Morgenthaler M, Schweizer E, Hoffmann-Röder A, Benini F, Martin RE, Jaeschke G, Wagner B, Fischer H, Bendels S, Zimmerli D, Schneider J, Diederich F, Kansy M, Müller K. ChemMedChem 2007; 2: 1100
    • 3e Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 4a Harper DB, O’Hagan D. Nat. Prod. Rep. 1994; 11: 123
    • 4b O’Hagan D, Harper DB. J. Fluorine Chem. 1999; 100: 127
    • 4c Aldemir H, Kohlhepp SV, Gulder T, Gulder TA. M. J. Nat. Prod. 2014; 77: 2331
    • 4d Walker MC, Chang MC. Y. Chem. Soc. Rev. 2014; 43: 6527
    • 5a Middleton EJr, Kandaswami C, Theoharides TC. Pharmacol. Rev. 2000; 52: 673
    • 5b Cornwell T, Cohick W, Raskin I. Phytochemistry 2004; 65: 995
    • 5c Veitch NC. Nat. Prod. Rep. 2007; 24: 417
    • 5d Veitch NC. Nat. Prod. Rep. 2009; 26: 776
    • 5e Botta B, Menendez P, Zappia G, de Lima RA, Torge R, Monache GD. Curr. Med. Chem. 2009; 16: 3414
    • 5f Simons R, Gruppen H, Bovee TF. H, Verbruggen MA, Vincken JP. Food Funct. 2012; 3: 810
    • 5g Mercader AG, Pomilio AB. Curr. Med. Chem. 2012; 19: 4324
    • 5h Eerdunbayaer, Orabi MA. A, Aoyama H, Kuroda T, Hatano T. Molecules 2014; 19: 13027
    • 6a Zhao L, Brinton RD. J. Med. Chem. 2005; 48: 3463
    • 6b Matin A, Gavande N, Kim M-S, Yang N-X, Salam N-K, Hanrahan J-R, Roubin RH, Hibbs DE. J. Med. Chem. 2009; 52: 6835
    • 6c Wetzel S, Wilk W, Chammaa S, Sperl B, Roth AG, Yektaoglu A, Renner S, Berg T, Arenz C, Giannis A, Oprea TI, Rauh D, Kaiser M, Waldmann H. Angew. Chem. Int. Ed. 2010; 49: 3666
    • 6d Shen J, Tan C, Zhang Y, Li X, Li W, Huang J, Shen X, Tang Y. J. Med. Chem. 2010; 53: 5361
    • 6e Axerio-Cilies P, Lack N-A, Nayana MR. S, Chan KH, Yeung A, Leblanc E, Guns MS. T, Rennie PS, Cherkasov A. J. Med. Chem. 2011; 54: 6197

      For relevant examples:
    • 7a Bondarenko SP, Frasinyuk MS, Khilya VP. Chem. Nat. Compd. 2007; 43: 402
    • 7b Chen YL, Tseng CH, Lo YC, Lin RW, Chen CF, Wang GJ, Ho ML, Tzeng CC. Med. Chem. 2013; 9: 748
    • 7c Shokol TV, Gorbulenko NV, Frasinyuk MS, Khilya VP. Chem. Nat. Compd. 2017; 53: 642

      For relevant examples:
    • 8a Arkhipov VV, Garazd MM, Smirnov MN, Khilya VP. Chem. Heterocycl. Compd. 2004; 40: 183
    • 8b Dymock BW, Barril X, Brough PA, Cansfield JE, Massey A, McDonald E, Hubbard RE, Surgenor A, Roughley SD, Webb P, Workman P, Wright L, Drysdale MJ. J. Med. Chem. 2005; 48, 4212
    • 8c Zhang ZT, Tan DJ, Xue D. Helv. Chim. Acta 2007; 90: 2096

      For relevant examples:
    • 9a Frasinyuk MS, Bondarenko SP, Khilya VP. Chem. Nat. Compd. 2006; 42: 673
    • 9b Fuchun X, Zhao H, Li D, Chen H, Quan H, Shi X, Lou L, Hun Y. J. Med. Chem. 2011; 54: 3200
    • 9c Xiang H, Yang C. Org. Lett. 2014; 16: 5686
    • 9d Mishra RK, Shum AK, Platanias LC, Miller RJ, Schiltz GE. Sci. Rep. 2016; 6: 30155
    • 10a Aitmambekov A, Khilya VP. Chem. Nat. Compd. 1993; 29: 731
    • 10b Aitmambetov A, Khilya VP. Chem. Nat. Compd. 1994; 30: 576
    • 10c Bondarenko SP, Turov AV, Khilya VP. Chem. Heterocycl. Compd. 1996; 32: 767
    • 10d Khilya VP, Aitmambetov A, Berdimbetova G. Chem. Nat. Compd. 1997; 33: 278
    • 10e Aitmambetov A, Khilya VP, Berdimbetova G. Chem. Nat. Compd. 1998; 34: 278
    • 10f Garazd YL, Garazd MM, Aitmambetov A, Khilya VP. Chem. Nat. Compd. 1999; 35: 301
    • 10g Frasinyuk MS, Bondarenko SP, Khilya VP, Liu C, Watta DS, Sviripa VM. Org. Biomol. Chem. 2015; 13: 1053
    • 11a Biddle MM, Lin M, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 3830
    • 11b Nibbs AE, Baize AL, Herter RM, Scheidt KA. Org. Lett. 2009; 11: 4010
    • 11c Farmer RL, Biddle MM, Huang X, Bergan RC, Scheidt KA. ACS Med. Chem. Lett. 2010; 1: 400
    • 11d Nibbs AE, Scheidt KA. Eur. J. Org. Chem. 2012; 3: 449
  • 12 Bolós J, Gubert S, Anglada L, Planas JM, Burgarolas C, Castelló JM, Sacristán A, Ortiz JA. J. Med. Chem. 1996; 39: 2962
  • 13 Pearson AJ, Roush WR. Handbook for Reagents in Organic Synthesis, Activating Agents and Protecting Groups. Wiley; Chichester: 1999

    • For several examples:
    • 14a Lv Z, Sheng C, Zhang Y, Wang T, Feng J, Sun H, Zhong H, Zhang M, Chen H, Li K. Bioorg. Med. Chem. Lett. 2010; 20: 7106
    • 14b Zhang Y, Lv Z, Zhong H, Zhang M, Zhang T, Zhang W, Li K. Tetrahedron 2012; 68: 9777
    • 14c Zhang Y, Zhong H, Lv Z, Zhang M, Zhang T, Li Q, Li K. Eur. J. Med. Chem. 2013; 62: 158
    • 14d Lv Z, Zhang Y, Zhang M, Chen H, Sun Z, Geng D, Niu C, Li K. Eur. J. Med. Chem. 2013; 67: 447
    • 14e Zheng SY, Li XP, Tan HS, Yu CH, Zhang JH, Shen ZW. Eur. J. Org. Chem. 2013; 7: 1356

      For several examples:
    • 15a Deng BL, Lepoivre JA, Lemiere G. Eur. J. Org. Chem. 1999; 10: 2683
    • 15b Kraus GA, Guney T, Kempema A, Hynam JM, Parvin B. Tetrahedron Lett. 2014; 55: 1549
    • 15c Xiang F, Jo M, Lee B, Han SB, Lee K, Jung JK, Seo SY, Kwak YS. Bioorg. Med. Chem. Lett. 2014; 24: 2062

      For several examples:
    • 16a Mewshaw RE, Zhao R, Shi X, Marquis K, Brennan JA, Mazandarin H, Coupet J, Andree TH. Bioorg. Med. Chem. Lett. 2002; 12: 271
    • 16b Wu L, Burgess K. Org. Lett. 2008; 10: 1779
    • 16c Li J, Hu M, Yao SQ. Org. Lett. 2009; 11: 3008
    • 16d Li BW, Zhang FH, Serrao E, Chen H, Sanchez TW, Yang M, Neamati N, Zheng YT, Wang H, Long YQ, Xiang F, Jo M, Lee B, Han SB, Lee K, Jung JK, Seo SY, Kwak YS. Bioorg. Med. Chem. 2014; 22: 3146
    • 17a Honey MA, Pasceri R, Lewis W, Moody CJ. J. Org. Chem. 2012;  77: 1396
    • 17b Gakh AA, Shermolovich Y. Curr. Top. Med. Chem. 2014; 14: 952