Synlett 2018; 29(19): 2535-2541
DOI: 10.1055/s-0037-1610636
cluster
© Georg Thieme Verlag Stuttgart · New York

Preparation and Properties of a Hydrolytically Stable Cyclooctyne-Containing Polymer

Kelvin Li
,
Stuart A. McNelles
,
Alex Adronov*
Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada   Email: adronov@mcmaster.ca
› Author Affiliations
Financial support for this work was provided by the Natural Science and Engineering Research Council of Canada (NSERC). S.M. is grateful for support through the Ontario Graduate Scholarships (OGS) program.
Further Information

Publication History

Received: 10 July 2018

Accepted after revision: 13 August 2018

Publication Date:
03 September 2018 (online)

Published as part of the Cluster Synthesis of Materials

Abstract

A poly[(phenylene vinylene)-co-dibenzocyclooctyne] polymer prepared by Wittig polymerization chemistry between dibenzocyclooctyne bisaldehyde [DIBO-(CHO)2] and bis(triethyleneglycol)phenylbis(tributylphosphonium) dibromide is reported. The resulting polymer exhibits moderate molecular weight (Mn: 10.5 kDa, Mw: 21.3 kDa, Ð: 2.02) and is fluorescent. It could be readily functionalized by strain-promoted alkyne-azide cycloadditon with different azides, and fluorescence of the polymer was preserved after functionalization. Grafting azide-terminated 5 kDa poly(ethylene glycol) monomethyl ether chains drastically affected the solubility of the polymer. Cross-linking the polymer with poly(ethylene glycol) that was terminated at both ends with azide groups gave access to a fluorescent organogel that could be dried and reswollen with water to form a hydrogel.

Supporting Information

 
  • References

  • 1 Chiang CK. Fincher CR. Park YW. Heeger AJ. Shirakawa H. Louis EJ. Gau SC. MacDiarmid AG. Phys. Rev. Lett. 1977; 39: 1098
  • 2 Shirakawa H. Louis EJ. MacDiarmid AG. Chiang CK. Heeger AJ. J. Chem. Soc., Chem. Commun. 1977; 578
  • 3 Burroughes JH. Bradley DD. C. Brown AR. Marks RN. Mackay K. Friend RH. Burns PL. Holmes AB. Nature 1990; 347: 539
  • 4 Leclerc M. J. Polym. Sci. Part A: Polym. Chem. 2001; 39: 2867
  • 5 Prey VV. Schindlbauer H. Cmelka D. Angew. Makromol. Chem. 1973; 28: 137
  • 6 McCullough RD. Adv. Mater. 1998; 10: 93
  • 7 Osaka I. Mccullough RD. Acc. Chem. Res. 2008; 41: 1202
  • 8 Morin J.-F. Leclerc M. Adès D. Siove A. Macromol. Rapid Commun. 2005; 26: 761
  • 9 Leclerc M. Morin J.-F. Design and Synthesis of Conjugated Polymers. Wiley-VCH; Weinheim: 2010
  • 10 Lei T. Dou JH. Pei J. Adv. Mater. 2012; 24: 6457
  • 11 Zhang F. Hu Y. Schuettfort T. Di CA. Gao X. McNeill CR. Thomsen L. Mannsfeld SC. B. Yuan W. Sirringhaus H. J. Am. Chem. Soc. 2013; 135: 2338
  • 12 Skotheim TA. Reynolds JR. Handbook of Conducting Polymers: Conjugated Polymers Processing and Applications. CRC Press; New York: 2007
  • 13 Kim BG. Ma X. Chen C. Ie Y. Coir EW. Hashemi H. Aso Y. Green PF. Kieffer J. Kim J. Adv. Funct. Mater. 2013; 23: 439
  • 14 Welch GC. Bazan GC. J. Am. Chem. Soc. 2011; 133: 4632
  • 15 Greenham NC. Samuel ID. W. Hayes GR. Phillips RT. Kessener YA. R. R. Moratti SC. Holmes AB. Friend RH. Chem. Phys. Lett. 1995; 241: 89
  • 16 Burn PL. Holmes AB. Kraft A. Bradley DD. C. Brown AR. Friend RH. Gymer RW. Nature 1992; 356: 47
  • 17 Greenham NC. Moratti SC. Bradley DD. C. Friend RH. Holmes AB. Nature 1993; 365: 628
  • 18 Perepichka IF. Perepichka DF. Meng H. Wudl F. Adv. Mater. 2005; 17: 2281
  • 19 Blouin N. Leclerc M. Acc. Chem. Res. 2008; 41: 1110
  • 20 Beaupré S. Boudreault P.-LT. Leclerc M. Adv. Mater. 2010; 22: E6
  • 21 Donat-Bouillud A. Lévesque I. Tao Y. D’Iorio M. Beaupré S. Blondin P. Ranger M. Bouchard J. Leclerc M. Chem. Mater. 2000; 12: 1931
  • 22 Morin J.-F. Leclerc M. Macromolecules 2002; 35: 8413
  • 23 Bao Z. Dodabalapur A. Lovinger AJ. Appl. Phys. Lett. 1996; 69: 4108
  • 24 Sirringhaus H. Wilson RJ. Friend RH. Inbasekaran M. Wu W. Woo EP. Grell M. Bradley DD. C. Appl. Phys. Lett. 2000; 77: 406
  • 25 He Z. Zhong C. Su S. Xu M. Wu H. Cao Y. Nat. Photonics 2013; 25: 593
  • 26 Shaheen SE. Brabec CJ. Sariciftci NS. Padinger F. Fromherz T. Hummelen JC. Appl. Phys. Lett. 2001; 78: 841
  • 27 Facchetti A. Chem. Mater. 2011; 23: 733
  • 28 Guo CX. Wang M. Chen T. Lou XW. Li CM. Adv. Energy Mater. 2011; 1: 736
  • 29 Milczarek G. Inganäs O. Science 2012; 335: 1468
  • 30 Mastragostino M. Arbizzani C. Soavi F. J. Power Sources 2001; 97: 812
  • 31 Tyler McQuade D. Pullen AE. Swager TM. Chem. Rev. 2000; 100: 2537
  • 32 Theato P. Klok HA. Functional Polymers by Post-Polymerization Modification: Concepts Guidelines and Applications. Wiley-VCH; Weinheim: 2013
  • 33 Mei J. Bao Z. Chem. Mater. 2014; 26: 604
  • 34 Arslan H. Saathoff JD. Bunck DN. Clancy P. Dichtel WR. Angew. Chem. Int. Ed. 2012; 51: 12051
  • 35 Kardelis V. Chadwick RC. Adronov A. Angew. Chem. Int. Ed. 2016; 55: 945
  • 36 Kardelis V. Li K. Nierengarten I. Holler M. Nierengarten JF. Adronov A. Macromolecules 2017; 50: 9144
  • 37 Li K. Kardelis V. Adronov A. J. Polym. Sci. Part A: Polym. Chem. 2018; in press ; DOI: 10 1002/pola.29093
  • 38 Suzuki A. J. Organomet. Chem. 1999; 576: 147
  • 39 Sonogashira K. J. Organomet. Chem. 2002; 653: 46
  • 40 Stefan MC. Javier AE. Osaka I. McCullough RD. Macromolecules 2009; 42: 30
  • 41 Löwe C. Weder C. Adv. Mater. 2002; 14: 1625
  • 42 Grimsdale AC. Chan KL. Martin RE. Jokisz PG. Holmes AB. Chem. Rev. 2009; 109: 897
  • 43 Cheng YJ. Yang SH. Hsu CS. Chem. Rev. 2009; 109: 5868
  • 44 McNulty J. Das P. McLeod D. Chem. Eur. J. 2010; 16: 6756
  • 45 McNulty J. McLeod D. Tetrahedron Lett. 2011; 52: 5467
  • 46 Das P. McLeod D. McNulty J. Tetrahedron Lett. 2011; 52: 199
  • 47 Li H. Zhang Y. Hu Y. Ma D. Wang L. Jing X. Wang F. Macromol. Chem. Phys. 2004; 205: 247
  • 48 Li H. Geng Y. Tong S. Tong H. Hua R. Su G. Wang L. Jing X. Wang F. J. Polym. Sci. Part A: Polym. Chem. 2001; 39: 3278
  • 49 Fabbrini G. Riccò R. Menna E. Maggini M. Amendola V. Garbin M. Villano M. Meneghetti M. Phys. Chem. Chem. Phys. 2007; 9: 616
  • 50 Synthesis of P0 A 3 mL microwave vial equipped with a stir bar was charged with 5 (0.500 g, 0.503 mmol), lithium hydroxide monohydrate (0.093 g, 2.213 mmol, 4.4 equiv), and dry THF (1.2 mL). The reaction mixture was stirred at r.t. for 15 min, followed by the addition of 3 (0.131 g, 0.503 mmol, 1 equiv). The reaction vessel was crimped with a cap and stirred overnight at 67 °C. Caution!! Pressure can build up in the microwave vial when heated above the boiling point of the solvent. The molecular weight of the polymer was monitored by GPC. Once the desired molecular weight was achieved, the reaction mixture was acidified with 1 M HCl and dissolved with DCM. Once dissolved, the reaction mixture was precipitated into cold 1:9 DCM/EtOH, and filtered. (Note: Prevention of solvent evaporation is crucial to reproducible formation of product. Significant solvent evaporation typically leads to formation of insoluble product. Other experimental conditions were explored, including the addition of 10 equiv of base, and the solvent and base combination of DMF and Cs2CO3, both of which resulted in similar polymer formation, as long the solvent did not evaporate.) Yield: 75% (0.248 g, 0.378 mmol of the repeat unit) of a yellow-brown solid. 1H NMR (600 MHz, CD2Cl2): δ = 7.55–7.11 (m, 9 H), 6.80–6.59 (m, 1 H), 4.24–4.13 (m, 3 H), 3.92–3.20 (m, 27 H), 2.39 (m, 2 H) ppm. GPC: Mn: 10.5 kDa, Mw: 21.3 kDa, Ð: 2.02.
  • 51 Harris JM. Struck EC. Case MG. Paley MS. Yalpani M. Van Alstine JM. Brooks DE. J. Polym. Sci., Polym. Chem. Ed. 1984; 22: 341
  • 52 Synthesis of P1 A 20 mL glass vial equipped with a stir bar was charged with the octyl azide (2.9 mg, 0.019 mmol, 1.5 equiv), THF (0.380 mL), and P0 (8.3 mg, 0.013 mmol, 1 equiv), and the mixture was sonicated briefly until the polymer dissolved. After dissolving the polymer, the mixture was stirred at r.t. for 30 min. THF was evaporated under reduced pressure, and the polymer was triturated with Et2O (3 × 1 mL, to remove excess azide) and then dried under vacuum. Yield: 99% (10.4 mg, 0.012 mmol) of a yellow-brown solid. 1H NMR spectrum in the Supporting Information. Mn: 10.0 kDa, Mw: 17.8 kDa, Ð: 1.79 (GPC).
  • 53 Synthesis of P2 A 20 mL glass vial equipped with a stir bar was charged with N3-mPEG5k (23.9 mg, 0.0048 mmol, 1.5 equiv) and THF (0.950 mL), and heated briefly until the azide dissolved. P0 (2.1 mg, 0.0032 mmol, 1 equiv) was added, and the mixture was sonicated briefly until the polymer dissolved. After dissolving the polymer, the mixture was stirred at r.t. over night. The THF was removed under reduced pressure, and the polymer was triturated with Et2O (3 × 3 mL, to remove excess azide) and then dried under vacuum. Yield: 99% (18.0 mg, 0.0032 mmol) of a yellow solid. 1H NMR spectrum in the Supporting Information. Mn: 71.4 kDa, Mw: 107.7 kDa, Ð: 1.51 (GPC).
  • 54 Hulvat JF. Sofos M. Tajima K. Stupp SI. J. Am. Chem. Soc. 2005; 127: 366
  • 55 Ji X. Yao Y. Li J. Yan X. Huang F. J. Am. Chem. Soc. 2013; 135: 74